
An Operating
Systems

Vade Mecum
Raphael A. Finkel

University of Wisconsin at Madison

Prentice Hall
Englewood Cliffs, New Jersey 07632

PREFACE

Traditionally, a vade mecum (pronounced ‘‘VAHdee MAYkem’’) is a laboratory manual
that guides the student step by step through complex procedures. Operating systems are
complex mixtures of policy and mechanism, of algorithm and heuristic, and of theoretical
goals and practical experience. This vade mecum tries to unify these diverse points of
view and guide the novice step by step through the complexities of the subject. As a text,
this book is intended for a first course in operating systems at the undergraduate level.
The subject has so many individual parts that its practitioners and teachers often concen-
trate on subareas and ignore the larger concepts that govern the entire subject. I have
tried to rectify that situation in this book by structuring the presentation about the dual
ideas of resource management and beautification.

To unify disparate threads of discussion, I have taken the liberty introducing names
for recurrent themes and glorifying them with the title ‘‘principles.’’ I hope that this
organization and nomenclature will help the reader to understand the subject better and to
integrate new ideas into the same framework.

Each technical term that is introduced in the text is printed inboldface the first
time it appears. All boldface entries are collected and defined in the glossary. I have
striven to use a consistent nomenclature throughout the book. At times this nomenclature
is at odds with accepted American practice. For example, I prefer to call computer
memory ‘‘store.’’ This name allows me to unify the various levels of the storage hierar-
chy, including registers, main store, swap space, files on disk, and files on magnetic tape.
I also prefer the single word ‘‘transput’’ to the clumsier but more common term
‘‘input/output.’’ Although I found this term jarring at first, I have grown to like it.

Each chapter closes with a section on perspective, suggestions for further reading,
and exercises. The perspective section steps back from the details of the subject and
summarizes the choices that actual operating systems have made and rules of thumb for
distinguishing alternatives. It also fits the subject of the chapter into the larger picture.
The suggestions for further reading have two purposes. First, they show the reader where
more information on the subject discussed in the chapter may be found. Second, they
point to research articles related to the subject that describe actual implementations and

xi

areas of current activity. The exercises also serve two purposes. First, they allow the
student to test his or her understanding of the subject presented in the text by working
exercises directly related to the material. More importantly, they push the student
beyond the confines of the material presented to consider new situations and to evaluate
new policies. Subjects that are only hinted at in the text are developed more thoroughly
in this latter type of exercise.

A course in operating systems is not complete without computer projects. Unfor-
tunately, such exercises require a substantial investment in software. The most success-
ful projects for a first course in operating systems involve implementing parts of an
operating system. A complete operating system can be presented to the class, with well-
defined modules and interfaces, and the class can be assigned the task of replacing
modules with ones of their own design. A less ambitious project has the students first
build a simple scheduler for a simulated machine. After it is completed, it can be
enhanced by adding virtual memory, transput, and other features. If the necessary
software is not available for these assignments, students can be asked to simulate particu-
lar policies or algorithms in isolation from a complete operating system. Several exer-
cises in the book give guidelines for this sort of project.

This second edition of the text differs from the first in several ways. Many figures
have been added, both to clarify individual points and to unify the treatment of different
subjects with similar diagrams. For example, the history of operating system styles is
now adorned with consistent pictures. The nuts and bolts of process switching has been
moved from Chapter 2 to Chapter 1, and a new section on virtual-machine operating sys-
tems has been added. The discussion ofpage-replacement policies inChapter 2 has been
enhanced with fault-rate graphs drawn from a simulation. Analysis and simulation are
described near the end of Chapter 2. Chapter 9 on co-operating processes has been
enlarged with a major new section on the communication-kernel approach. The Hys-
teresis Principle has been introduced. Minor errors and inconsistencies have been fixed
throughout the text.

I owe a debt of gratitude to the many people who helped me write this text. The
students of Bart Miller’s operating system class all wrote book reviews for an early draft.
My parents Asher and Miriam and my brothers Joel and Barry devoted countless hours to
a careful reading of the entire text, suggesting clarifications and rewording throughout.
My colleagues Bart Miller, Mary Vernon, and Michael Carey read and criticized indivi-
dual chapters. Michael Scott’s careful reading of Chapter 8 and his keen insight into
language issues in general were of great help. I am also grateful to Charles Shub, Felix
Wu, Aaron Gordon, Mike Litskow, Ianne H. Koritzinsky, Shlomo Weiss, Bryan Rosen-
burg, and Hari Madduri for their helpful comments. This book was prepared using the
Troff program on a Unix operating system. I would have been lost without it. Finally, I
would like to thank my wife, Beth Goldstein, for her support and patience, and my
daughter, Penina, for being wonderful.

Raphael A. Finkel
University of Wisconsin−Madison

12 Preface

chapter 1

INTRODUCTION

The development of operating systems has progressed enormously in the last few
decades. Open shop computing has given way to batch processing, which in turn has
yielded to interactive multiprogramming as emphasis shifted first to efficient use of
expensive machines and then to effective shared use. The recent trend to personal
workstations has turned full circle back to the earliest beginnings: a single user associated
with a single machine.

The long and complex journey has not been pointless. As computer use has
expanded, so has the sophistication with which we deal with all of its aspects. Ad hoc
mechanisms have become standardized, then formalized, then analyzed. Standing at the
present and looking back, we have the advantage of seeing the larger picture and of
knowing how originally unconnected ideas fit together and reinforce each other. We
realize that the proper software for a personal workstation has more in common with
large operating systems for interactive multiprogramming than it has with open shop
computing.

The future holds the promise of increased use of networking to interconnect com-
puters in various ways. Multiple-user machines will soon be built of communities of
communicating computers. This new theme has already begun to be played. It is an
exciting time to be studying operating systems.

1 PHILOSOPHY OF THE BOOK

In this book, I have carefully tried to distinguish mechanisms from policies.Mechan-
isms are techniques that perform activities.Policies are rules that decide which activities
to perform. The mechanisms are the ‘‘nuts and bolts’’ of operating systems and often
depend to some extent on the hardware on which the operating system runs.

1

We will give examples of nuts-and-bolts programming in a high-level language.
Most modern operating systems are written in such languages, reserving assembler
language for those few aspects that cannot be captured in a higher level language. For
the sake of concreteness, we will present programs in a Modula-like syntax. Modula is
closely related to Pascal. (See the Further Reading section at the end of the chapter.)
The examples are all carefully annotated, so it should be possible to follow them even if
you have only a nodding acquaintance with any language in the Algol family, such as
Pascal. In most cases, written algorithms are supplemented with pictures.

You should be able to read this book comfortably if you have had an undergradu-
ate course in data structures and in machine organization. Some sophistication in
mathematics (for example, one semester of calculus) would also be helpful but is not
required.

A glossary at the end of the book provides in one place simple definitions of words
that are used repeatedly. When these words appear for the first time in the text, they are
set inboldface type. I have taken some pains to use words consistently in order to make
this book clear. Unfortunately, computer literature often employs the same term to mean
different things in different contexts. (An excellent example is ‘‘heap,’’ which means
‘‘free storage pool’’ in the Pascal context but ‘‘data structure for implementing a priority
queue’’ in the operating systems context.) You will discover that I avoid certain words
altogether. In particular, the word ‘‘system’’ has lost all its power because it has
acquired a multitude of meanings, many of which are fuzzy at best. I treat ‘‘operating
system’’ as a compound word with a well defined connotation that should become
increasingly clear as you study this book. The terms ‘‘control program’’ or ‘‘monitor’’
would have been preferable, but those terms have already become associated with other
specialized meanings.

This book sorts through a large body of knowledge, covering a continuum from
elementary concepts through advanced ideas. Intended primarily as a text for an under-
graduate course in operating systems, it also introduces topics of interest to graduate-
level students and professionals. In addition, the book presents a continuum from terrible
ideas through workable ideas to great ideas. Often the first way one tries to solve a prob-
lem is easy to understand and easy to implement but works poorly. With some clever-
ness, one finds a better method that is far superior to the first. Then a host of other solu-
tions, mostly variations on the second method, come to mind. These refinements are
often worth mentioning but usually not worth implementing. We call this observation the
Law of Diminishing Returns.

The Latin phrasevade mecum means ‘‘walk with me.’’ Books with this title are
usually laboratory manuals explaining techniques step by step. This vade mecum is dif-
ferent in that it explains the problems and explores various solutions before giving
advice. It can be useful both in the classroom and in the home or office library.
Although each chapter is fairly self-contained, some subjects cannot be easily separated
from others and must be explained, at least in part, before all the related issues have been
covered. If you are a novice, your journey should start at the beginning of the book. If
you are an expert looking for a particular subject, try the glossary first, then the index. If
you are a teacher using this book as a text, feel free to choose which algorithms of the
‘‘sophisticated variation’’ type to cover.

Let’s begin the journey: Vade mecum!

2 Introduction Chapter 1

2 THE RESOURCE PRINCIPLE

In this book you will find both specific and general information about the structure and
behavior of operating systems. We will start by presenting two very different
‘‘definitions’’ of an operating system. These definitions will serve to introduce the major
concepts that are elucidated in the rest of the book. Our first definition is called the
Resource Principle. The second is theBeautification Principle. We will also intro-
duce theLevel Principle, an important structuring concept for operating systems. Here
is the Resource Principle:

��

Resource Principle��

An operating system is a set of algorithms
that allocate resources to processes.���

�
�
�
�

�
�
�
�
�

A resource is a commodity necessary to get work done. The computer’s hardware
provides a number of fundamental resources. Working programs need to reside some-
where in main store (the computer’s memory), must execute instructions, and need some
way to accept data and present results. These needs are related to the fundamental
resources ofspace, time, andtransput (input/output). In addition to these fundamental
resources, the operating system introduces new resources. For example,files are able to
store data. Programs might be able to communicate with each other by means ofports
that connect them. Even higher-level resources can be built on top of these, such as
mailboxes used to pass messages between users.

The notion of a process is central to operating systems, but is notoriously hard to
define. To a first approximation, aprocess is the execution of a program. It is a funda-
mental entity that requires resources in order to accomplish its task, which is to run the
program to completion.

One can picture processes as actors simultaneously performing one-actor plays in a
theater; stage props are their resources. As actors need props, they request them from the
property manager (the operating system resource allocator). The manager’s job is to
satisfy two conflicting goals on behalf of the actors:

� to let each actor have whatever props are needed
� to be fair in giving props to each actor.

The manager also is responsible to the owners of the theater (that is, the owners of the
computer), who have invested a considerable sum in its resources. This responsibility
also has several goals:

� to make sure the props (resources) are used as much as possible
� to finish as many plays (processes) as possible.

The Resource Principle 3

Another way to look at processes is to consider them as agents representing the interests
of users. When a user wants to compose a letter, a process runs the program that con-
verts keystrokes into changes in the document. When the user wants to mail that letter
electronically, a process (perhaps a new one) runs a different program that knows how to
send documents to mailboxes. In general, processes run programs that help the user. In
order to do their work, they may in turn need help from the operating system for such
operations as receiving keystrokes and placing data in long-term storage. They require
resources such as space in main store and machine cycles. The Resource Principle says
that the operating system is in charge of allocating such resources.

3 HISTORICAL DEVELOPMENT

3.1 Open shop

Operating systems developed as technology and demand increased. The earliest comput-
ers were massive, extremely expensive, and difficult to use. Individuals (calledusers)
would sign up for blocks of time during which they were allowed ‘‘hands-on’’ use of the
computer. This situation is depicted in Figure 1.1, which shows a single program, sub-
mitted by the user through a device like a card reader, executing on the machine. The
machine had two major components, its transput devices and its ability to execute a pro-
gram. A typical session on the IBM 1620, a computer in use around 1964, involved
several steps in order to compile and execute a program. First, the user would load the
first pass of the Fortran compiler. This operation involved clearing main store by typing
a cryptic instruction on the console typewriter; putting the compiler, a 10-inch stack of
punched cards, in the card reader; placing the program to be compiled after the compiler
in the card reader; and then pressing the ‘‘load’’ button on the reader. The output would
be a set of punched cards called ‘‘intermediate output.’’ If there were any compilation
errors, a light would flash on the console, and error messages would appear on the con-
sole typewriter. Assuming everything had gone well so far, the next step would be to
load the second pass of the Fortran compiler just like the first pass, putting the intermedi-
ate output in the card reader as well. If the second pass succeeded, the output was a
second set of punched cards called the ‘‘executable deck.’’ The third step was to shuffle
the executable deck slightly, load it along with a massive subroutine library (another 10
inches of cards), and observe the program as it ran.

The output of a program might appear on cards or paper. Frequently, the output
was wrong. To figure out why involveddebugging, which often took the form of peek-
ing directly into main store and even patching the program by using console switches. If
there was not enough time to finish, a frustrated user might get a line-printer listing of
main store (known as adump of store) to puzzle over at leisure. If the user finished
before the end of the allotted time, the machine might sit idle until the next reserved

4 Introduction Chapter 1

user

printercard readertypewriter

executing job

Figure 1.1 Open shop

block of time.

3.2 Operator-driven shop

The economics of computers made such idle time very expensive. In an effort to avoid
such idleness, installation managers instituted several modifications to theopen shop
mechanism just outlined. Anoperator was hired to perform the repetitive tasks of load-
ing jobs, starting the computer, and collecting the output. This situation is shown in Fig-
ure 1.2. The operator was often much faster than ordinary users at chores such as mount-
ing cards and magnetic tapes, so the setup time between job steps was reduced. If the
program failed, the operator could have the computer produce a dump. It was no longer
feasible for users to inspect main store or patch programs directly. Instead, users would
submit their runs, and the operator would run them as soon as possible. Each user was
charged only for the amount of time the job required.

The operator often reduced setup time by batching similar job steps. For example,
the operator could run the first pass of the Fortran compiler for several jobs, save all the
intermediate output, then load the second pass and run it on all the intermediate output
that had been collected. In addition, the operator could run jobs out of order, perhaps
charging more for giving some jobs priority. Jobs that were known to require a long time
could be delayed until night. The operator could always stop a job that was taking too
long.

Historical development 5

executing job

typewriter card reader printer

operator

users

in out

Figure 1.2 Operator-driven shop

3.3 Offline transput

Much of the operator’s job was mechanical. The next stage of development was to auto-
mate that job, as shown in Figure 1.3. First, input to jobs was collectedoffline, that is, by
using a separate computer (sometimes called a ‘‘satellite’’) whose only task was the
transfer from cards to tape. Once the tape was full, the operator mounted it on the main
computer. Reading jobs from tape is much faster than reading cards, so less time was
occupied with transput. When the computer finished the jobs on one tape, the operator
would mount the next one. Similarly, output was generated onto tape, an activity that is
much faster than punching cards. This output tape was converted to line-printer listing
offline.

A small resident monitor program, which remained in main store while jobs were
executing, reset the machine after each job was completed and loaded the next one. Con-
ventions were established for cards (or ‘‘card images,’’ as they are called once they are
on tape) to separate jobs and specify their requirements. These conventions were the
rudiments ofcommand languages. For example, one convention was to place an aster-
isk in the first column of control cards, to distinguish them from data cards. The compi-
lation job we just described could be specified in cards that looked like this:

6 Introduction Chapter 1

device control

executing job

resident monitor

tape

users

operator

printercard readertypewriter

tapeprintercard reader

main computer

offline computer

Figure 1.3 Offline transput

*JOB SMITH The user’s name is Smith.
* PASS CHESTNUT Password to prevent others from using Smith’s account
* OPTION TIME=60 Limit of 60 seconds
* OPTION DUMP=YES Produce a dump if any step fails.
*STEP FORT1 Run the first pass of the Fortran compiler.
* OUTPUT TAPE1 Put the intermediate code on tape 1.
* INPUT FOLLOWS Input to the compiler comes on the next cards.

... Fortran program
*STEP FORT2 Run the second pass of the Fortran compiler.
* OUTPUT TAPE2 Put the executable deck on scratch tape 2.
* INPUT TAPE1 Input comes from scratch tape 1.
*STEP LINK Link the executable with the Fortran library.
* INPUT TAPE2 First input is the executable.
* INPUT TAPELIB Second input is a tape with the library.
* OUTPUT TAPE1 Put load image on scratch tape 1.
*STEP TAPE1 Run whatever is on scratch tape 1.
* OUTPUT TAPEOUT Put output on the standard output tape.
* INPUT FOLLOWS Input to the program comes on the next cards.

... Data

The resident monitor had several duties:

� to interpret the command language
� to perform rudimentary accounting
� To provide device-independent input and output by substituting tapes for cards.

Historical development 7

The running program could deal with tapes directly, but as a convenience, the resident
monitor provided a few subroutines for reading from the current input tape and writing to
the current output tape.

3.4 Spooling systems

Next, transput units were designed to run at the same time the computer was computing.
They generated aninterrupt when they finished reading or writing a record instead of
requiring the computer to monitor their progress. An interrupt causes the computer to
save some critical information (such as its current program counter) and to branch to a
location specific for the kind ofinterrupt. Device-serviceroutines, known as adevice
drivers, were added to the resident monitor to deal with these interrupts.

Disks were introduced as a secondary storage medium. Now the computer could
be computing one job while reading another onto the disk and printing the results of a
third from the disk. Unlike a tape, the disk allowed programs to be stored anywhere, so
there was no need for the computer to execute jobs in the same order in which they were
entered. A primitivescheduler was added to the resident monitor to sort jobs based on
priority and amount of time needed, both of which could be specified on control cards.
The operator was often retained to perform several tasks.

� to mount data tapes needed by jobs (also specified on control cards)
� to make policy decisions, such as which priority jobs to run and which to hold
� to restart the resident monitor when it failed or was inadvertently destroyed by the

running job.

This mode of running a computer was known as aspooling system, and its resident mon-
itor was the start of modern operating systems. (The word ‘‘spool’’ originally stood for
‘‘simultaneous peripheral operations on line,’’ but it is easier to picture a spool of thread,
where new jobs are wound on the outside, and old ones are extracted from the inside.)
One of the first spooling systems was HASP (the Houston Automatic Spooling Program),
an add-on to OS/360 for the IBM 360 computer family. A spooling system is shown in
Figure 1.4.

Spooling systems prevent users from fiddling with console switches to debug and
patch their programs. The era of spooling systems introduced the long-lived tradition of
the users’ room. The users’ room wascharacterized by longtables, often overflowing
with oversized fan-fold paper, and a quietly desperate group of users, each politely ignor-
ing the others, drinking copious amounts of coffee, buying junk food from the vending
machines, and staring bleary-eyed at the paper.

3.5 Batch multiprogramming

8 Introduction Chapter 1

resident monitor and scheduler

card reader

device controlinterrupts

disks printers tapes

executing job

Figure 1.4 Spooling system

Spooling systems did not make efficient use of all of their resources. The job that was
currently running might not need the entire main store. A job that performed transput
would idle the computer until the transput was finished. The next improvement was the
introduction of multiprogramming, a scheme in which more than one job is active
simultaneously. We show this situation in Figure 1.5. While one job is waiting for a
transput operation to complete, another can compute. With luck, no time at all is wasted

device interface

process interface

cardsclock

processes

responses

tapesprintersdisks

interrupts device control

kernel

service calls

Figure 1.5 Batch multiprogramming

Historical development 9

waiting for transput. The more jobs run at the same time, the better. However, a
compute-bound job (one that performs little transput but much computation) could
easily preventtransput-bound jobs (those that perform mostly transput) from making
progress. Competition for the time resource and policies for allocating it are the main
theme of Chapter 2.

Multiprogramming also introduces competition for space. The number of jobs that
can be accommodated at one time depends on the size of main store and the hardware
available for dividing up that space. In addition, jobs must be secured against inadvertent
or malicious interference or inspection by otherjobs. It is more critical now that the
resident monitor not be destroyed by errant programs, because not one but many jobs will
suffer if it breaks. In Chapter 3, we will examine policies for space allocation and how
each of them provides security.

The form of multiprogramming we have been describing is often calledbatch mul-
tiprogramming because each job batches together a set of steps. The first might be com-
pilations, the next a linking step to combine all the compiled pieces into one program,
and finally the program would be run. Each of these steps requires the resident monitor
to obtain a program (perhaps from disk) and run it. The steps are fairly independent of
each other. If one compilation succeeds but another fails, it is not necessary to recompile
the successful program. The user can resubmit the job with one of the compilations omit-
ted.

Since job steps are independent, the resident monitor can separate them and apply
policy decisions to each step independently. Each step might have its own time, space,
and transput requirements. In fact, two separate steps of the same job can sometimes be
performed at the same time! The termprocess was introduced to mean the entity that
performs a single job step. The scheduler creates a new process for each job step. The
process will terminate when its step is finished. The operating system (as the resident
monitor may now be called) keeps track of each process and its needs. A process may
request assistance from the kernel by submitting aservice call across theprocess inter-
face. Executing programs are no longer allowed to control devices directly; otherwise,
they could make conflicting use of devices and prevent the kernel from doing its job.
Instead, processes must use service calls to access devices, and the kernel has complete
control of thedevice interface.

Granting resources to processes is not a trivial task. A process might require
resources (like tape drives) at various stages in its execution. If a resource is not avail-
able, the scheduler might block the process from continuing until later. The scheduler
must take care not to block any process forever. Chapter 4 deals with the issues raised by
allocation of resources like tape drives that can be reused after one process finishes but
should not be taken from a process while it is running.

Along with batch multiprogramming came new ideas for structuring the operating
system. Thekernel of the operating system is composed of routines that manage central
store, time, and devices, and other resources. It responds both to requests from processes
and to interrupts from devices. In fact, the kernel runs only when it is invoked either
from above, by a process, or below, by a device. If no process is ready to run and no
device needs attention, the computer sits idle.

Various activities within the kernel share data, but they must be not be interrupted
when the data are in an inconsistent state. Mechanisms forconcurrency control were
developed to ensure that these activities do not interfere with each other. Chapter 8 intro-
duces the mutual-exclusion and synchronization problems associated with concurrency

10 Introduction Chapter 1

control and surveys the solutions that have been found for these problems.

3.6 Interactive multiprogramming

The next step in the development of operating systems was the introduction ofinterac-
tive multiprogramming, shown in Figure 1.6. The principal user-oriented transput dev-
ice changed from cards or tape to the interactive terminal. Instead of packaging all the
data that a program might need before it starts running, the interactive user is able to sup-
ply input as the program wants it. The data can depend on what the program has pro-
duced so far.

Interactive computing is sometimes added into an existing batch multiprogram-
ming environment. For example, TSO (‘‘timesharing option’’) was an add-on to the
OS/360 operating system. In contrast, batch is sometimes added into an existing interac-
tive environment. Unix installations, for example, often provide a batch service.

Interactive computing caused a revolution in the way computers were used.
Instead of being treated as number crunchers, they became information manipulators.
Interactivetext editors allowed users to construct data files online. These files could
represent programs, documents, or data. Instead of speaking of a job composed of steps,
interactive multiprogramming (also called ‘‘timesharing’’) deals withsessions that last
from initial connection (logon) to the point at which that connection is broken (logoff).

service calls

other computers

user interface

kernel

device controlinterrupts

disks printers tapes

responses

processes

clockcards

process interface

device interface

terminals networks

Figure 1.6 Interactive multiprogramming

Historical development 11

During logon, the user typically gives two forms of identification: a name and a pass-
word. (The password is not echoed back to the terminal, or is at least blackened by over-
striking garbage, to avoid disclosing it to onlookers.) These data are converted into a
user identifier that is associated with all the processes that run on behalf of this user and
all the files they create. This identifier helps the kernel decide whom to bill for services
and whether to permit various actions such as modifying files. (We discuss file protec-
tion in Chapter 6.)

During a session, the user imagines that the resources of the entire computer are
devoted to this terminal, even though many sessions may be active simultaneously for
many users. Typically, one process is created at logon time to serve the user. That first
process may start others as needed to accomplish individual steps. This main process is
called thecommand interpreter. The command interpreter and other interactive facili-
ties are discussed in Chapter 7, which discusses the general subject of the user interface.

The development of computing strategies has not ended. Recent years have seen
the introduction of personal computers. The operating systems of these machines often
provide for interactive computing but not for multiprogramming. CP/M is a good exam-
ple of this approach. Other operating systems provide multiprogramming as well as
interaction and allow the user to start several activities and direct attention to whichever
is currently most interesting.

3.7 Distributed computing

The newest development in operating systems isdistributed computation. Computers
can be connected together by a variety of devices. The spectrum ranges from tight cou-
pling, where several computers share main storage, to very loose coupling, where a
number of computers belong to the same international network and can send one another
messages. Chapter 9 discusses inter-process communication and other issues that
become especially important in the distributed-computing domain.

4 THE BEAUTIFICATION PRINCIPLE

We have seen the Resource Principle as a way to define operating systems. An equally
important definition is theBeautification Principle:

12 Introduction Chapter 1

���

Beautification Principle���

An operating system is a set of algorithms that
hide the details of the hardware

and provide a more pleasant environment.��
�
�
�
�
�

�
�
�
�
�
�

Hiding the details of the hardware has two goals.

� Security. We have already seen that the operating system must secure itself and
other processes against accidental ormalicious interference.Certain instructions
of the machine, notably those that halt the machine and those that perform transput,
must be removed from the reach of processes. Modern hardware provides several
processor states that restrict the use of instructions. For example, some architec-
tures provide two states, calledprivileged state and non-privileged state.
Processes run in non-privileged state. Instructions such as those that perform
transput and those that change processor state cause traps when executed in non-
privileged state. These traps force the processor to jump to the operating system
and enter privileged state. The operating system runs in privileged state. All
instructions have their standard meanings in this state. As we will see in Chapter
3, the operating system can restrict access to main store so that processes may not
access all of it.

� Abstraction. Operating systems, like other software components, construct
higher-level (virtual) resources out of lower-level (physical) ones. Details of the
lower-level structures are hidden, and higher-level structures are introduced. From
the point of view of a process, the physical machine is enhanced by the operating
system into a virtual machine. Enhancement includes both simplicity (hiding
details) and function (introducing new structures). Neither time (ability to execute)
nor space (main store) appears to be shared with other processes. The virtual
machine is thus simpler than the physical machine. The process interface provides
extra instructions that improve on the basic hardware instruction set, particularly
with respect to transput. The virtual machine is thus more functional than the phy-
sical machine.

From the point of view of the user, the operating system provides services that
are not present in the underlying machine. These services include loading and run-
ning programs, providing for interaction between the user and the running pro-
grams, allowing several programs to run at the same time, maintaining accounts to
charge for services, storing data and programs, and participating in networks of
computers.

An important example of the beautification role of the operating system is found in
transput services. transput devices are extremely difficult to program efficiently and
correctly. Most operating systems providedevice drivers that perform transput opera-
tions on behalf of processes. These drivers also ensure that two processes do not
accidentally try to use the same device at once. The operations that are provided are
often at a much higher level than the device itself provides. For example, device-
completion interrupts might be hidden; the operating system might block processes that
perform transput until the transfer completes. Chapter 5 is devoted to a discussion of

The Beautification Principle 13

transput devices and how they are manipulated by the operating system. An abstract file
structure is often imposed on the data stored on disk. This structure is higher-level than
the raw disk. Chapter 6 describes files and how they are implemented.

5 THE KERNEL AND PROCESSES

Before we study how operating systems manage resources such as time and space, we
must first lay some foundations. In particular, you must understand how an operating
system represents processes and how it switches between them. The core of the operat-
ing system is thekernel, a control program that reacts to interrupts from external devices
and to requests for service from processes. We have depicted the kernel in Figures 1.5
and 1.6. The kernel is a permanent resident of the computer. It creates and terminates
processes and responds to their requests for service.

5.1 Context blocks

Each process is represented in the operating system by a collection of data known as the
context block. The context block includes such information as the following.

� state and scheduling statistics (described in Chapter 2)
� use of main and backing store (described in Chapter 3)
� other resources held (described in Chapter 4)
� open transput devices (described in Chapter 5)
� open files (described in Chapter 6)
� accounting statistics
� privileges.

We will single out several important pieces of information. Here is a Modula
declaration that will serve our purpose:

1 const
2 MaxNumProcesses = 10; { the number of processes we are
3 willing to let exist at any one time }
4 NumRegisters = 16; { the number of registers this computer has }

14 Introduction Chapter 1

5 type
6 ContextBlockType = { per-process information }
7 record
8 { state vector information }
9 ProgramCounter : Address; { execution address of the program }
10 ProcessorState : integer; { state of processor, including
11 such information as priority and mode. Depends on the
12 computer hardware. }
13 Registers : array 1:NumRegisters of integer;
14 { other information here }
15 end; { ContextBlockType }
16 var
17 ContextBlocks : { all information about processes }
18 array 1:MaxNumProcesses of ContextBlockType;

We will concentrate for the time being on thestate vector part of the context block
(lines 8−13). This is the part of the context block that the operating system keeps avail-
able at all times. Other less frequently used parts of the context block might be stored on
backing store (disk, for example). In the simple state vector shown here, the operating
system records theprogram counter (line 9) and theprocessor state (line 10) of the
process. The meaning of these fields depends on the type of computer for which the
operating system is designed. The program counter tells where the next instruction to be
executed by this process is stored, and the processor state indicates hardware priority and
other details that we shall ignore for now. In addition, the state vector holds the values of
the computer’s registers as they were when the process last stopped running.

Assume that processA has been picked to run next. We are not interested at
present in the policy that decided thatA should run, only the mechanism by which the
kernel causesA to start executing. The ground rules that we will follow for this exercise
are the following:

(1) There is only one processor, so only one process can run at a time. (Multipro-
cessor computers have several processors, so they can run several processes
simultaneously. We will discuss multiprocessors in Chapter 9.)

(2) The kernel has decided to start runningA instead of the process that is currently
using the computing resource.

(3) The state vector forA accurately represents the state of the program counter, the
processor state, and the registers the last timeA was running. All these must be
restored as part of turning the processor over toA.

(4) A’s program is currently in main store, and we can ignore all aspects of space
management. Space management is a large subject that we will take up in
Chapter 3.

Switching the processor from executing the kernel to executingA is called context
switching, since the hardware must switch from the context in which it runs the kernel to
the one in whichA runs. In Figure 1.7, the currently executing object is highlighted with
a double border. Before the context switch, the kernel is running. Afterwards, processA
is running. Switching back to the kernel from processA is also a context switch. This
kind of context switch happens whenA tries to execute a privileged instruction (includ-
ing the service call instruction) or when a device generates an interrupt. Both these situa-
tions will be described in more detail. In either case, a context switch to the kernel gives
it the opportunity to update accounting statistics for the process that was running and to
select which process should be run after the service call or interrupt has been serviced.

The kernel and processes 15

service calls

devices

devices

kernel

kernel

processes

processes

responses

A B C D E

responses
before

after

A B C D E

service calls

Figure 1.7 Context switch

Not only does the kernel have its own register contents and its own program
counter, but it also has special privileges that allow it to access transput devices. These
privileges must be turned off whenever a process is running. Privilege is usually con-
ferred by the processor state, so a process has a different processor state from the kernel.
Some computers provide only separate privileged and non-privileged states, whereas oth-
ers have several gradations between them. The ability to change from one state to
another requires special privilege.

Since this is our first detailed example of the work that an operating system per-
forms, we will say a word about how operating systems are constructed. In the early
days of computers, operating systems were written as single large programs encompass-
ing hundreds of thousands of lines of assembler instructions. Two trends have made the
job of writing operating systems less difficult. First, high-level languages have made
programming the operating system much easier. Second, the discipline of structured pro-
gramming has suggested a modular approach to writing large programs; this approach
allows large problems to be decomposed into smaller pieces. The program that switches
context can be seen as one such small piece. It could be a procedure written in a high-
level language like Modula. These pieces can often be arranged in layers, with each
layer providing services to the ones above it. For example, one could build the layers as
follows:

� Context- and process-switch services (lowest layer)
� Device drivers
� Resource managers for space and time
� Service call interpreter (highest layer)

16 Introduction Chapter 1

For example, the CP/M operating system provides three levels: (1) device drivers (the
BIOS section of the kernel), (2) a file manager (BDOS), and (3) an interactive command
interpreter (CCP). It supports only one process and provides no security, so there is no
need for special context-switch services.

Switching context from the kernel back to a process involves copying information
between the context block and hardware registers of the machine. This information
includes the program counter, the processor state, and the contents of addressible regis-
ters. Most high-level languages (including Modula) do not provide the necessary facility
to deal with these hardware issues directly. Luckily, some newer computers (such as the
DEC VAX) have single instructions that do all the context-switch work themselves. Still,
high-level languages are unlikely to generate those instructions. Furthermore, the speed
of context switching is critical because this operation takes place every time an interrupt
is serviced by the kernel or a process makes a request to the kernel. The result is that
context switching is usually performed by a procedure written in assembler language.

5.2 Process lists

The context blocks for processes are stored in lists. Each list is dedicated to some partic-
ular class of processes. These classes can be divided as follows.

� Running. The process that is currently executing. On most computers, only one
process is running at any time. However, on multiprocessors, which we discuss in
Chapter 9, several processes can run at once.

� Ready. Processes that are ready to run but are not currently running because of a
policy decision. As we will see in Chapter 2, there may be several ready lists.

� Waiting. Processes that cannot run now because they have made requests that
have not yet been fulfilled. The kernel might keep a different list for every type of
service that may have been requested. For example, space management sometimes
causes processes to wait in a ‘‘main-store wait’’ list until there is enough room to
run them. A process reading data from a file might wait in a ‘‘file transput wait
list’’ until the data are read in. Each device that a process may use for transput
might have its own wait list. While a process is in a wait list, we say it isblocked.

These lists are commonly called ‘‘queues,’’ but they need not be built as queues usually
are, with entry only at one end and departure from the other. They may be represented
implicitly, with each context block holding a field that indicates which list it is on. They
may be stored in a heap data structure according to some priority so that the one with the
most urgency can be accessed quickly.

5.3 Service calls

The kernel and processes 17

Various events can cause a process to be moved from one list to another. A process
makes a request of the kernel by submitting aservice call, which might ask for resources,
return resources, or perform transput. As a result of this call, the scheduler might decide
to place that process back on the ready list and start running another process from the
ready list. This operation, which we call aprocess switch, usually takes more time than
a simple context switch. After the process switch, a context switch starts executing the
new process. Figure 1.8 shows the effect of the kernel switching process fromA to B.

Most operating systems build service calls from instructions that cause processor
traps. Processor traps always switch context to the kernel. On the DEC PDP-11, for
example, the EMT and the TRAP instructions are both used by various operating systems
to achieve communication between processes and the kernel. A similar effect is achieved
on the IBM 360 and 370 computers with the SVC instruction and on the DEC PDP-10
with the UUO instruction. A trap causes the hardware to copy certain hardware registers,
such as the program counter and the processor state, to a safe place (typically onto a
stack). The hardware then loads those hardware registers with the appropriate new con-
text (which includes the program counter for the location in the kernel where its trap-
handler program is stored). It then sets the processor to privileged state. The operating
system must then move the context information saved by the hardware into the context
block of the process that was running at the time of the trap.

Some operating systems use ordinary subroutine-call instructions for service calls.
CP/M, for example, uses a jump to location 5 to invoke service calls. Again, the operat-
ing system may save context information in the context block while it is handling the ser-
vice call.

responses

processes

devices

kernel

A B C D E

service calls

responses

processes

devices

kernel

before

after

A B C D E

service calls

Figure 1.8 Process switch

18 Introduction Chapter 1

Service calls are like subroutine calls from the point of view of the calling process.
Arguments are first placed in a standard place (on a stack, in registers, right after the call,
or in a communication area), and then the service-call instruction is executed. When
control is returned by the kernel to the process, the process is ready to execute the next
instruction. Results passed back from the kernel are stored in registers, on the stack, or in
a communication area.

Sometimes service calls are simple matters that should not cause the process mak-
ing the request to wait. For example, a process might request the current time of day.
This information is readily available, so the kernel just switches context back to the cal-
ling process, giving it the information it wanted. If the process must wait before the ser-
vice it requested can be provided, process switching is involved. We will see that store
management introduces extra costs for process switching.

Interrupts caused by a transput device also cause context to switch from the current
process to the kernel. The same sequence of actions (saving old context, loading new
context, changing state) occurs for interrupts as for traps. The interrupt might indicate
completion of an operation that some other process was waiting for, in which case the
kernel might place that process on the ready list. A policy decision could switch to that
process, at the expense of the former process. We will discuss devices in Chapter 5.

One very important interrupt is generated by a device called theclock. Clocks can
be designed to interrupt periodically (every 60th of a second, for example) or to accept an
interval from the computer and interrupt when that time has expired. If it were not for
clock interrupts, a running process could sit in an accidental infinite loop that performs
no service calls, and the kernel would never be able to wrest control from it. The kernel
therefore depends on the clock to force a context switch back to the kernel so that it can
make new policy decisions.

The fact that processes belong to lists points to an important insight into operating
system structure:

��

Level Principle��

Active entities are data structures when viewed from a lower level.���
�
�
�

�
�
�
�

The Level Principle applies to processes in this way: A process considers itself an active
entity that executes instructions and makes service calls on the kernel. From the kernel’s
point of view, however, the process is just a data structure (largely contained in the con-
text block, but also including all the store used by the process) that can be manipulated.
Manipulations include moving the process from list to list and causing the process to exe-
cute.

Even an executing program like the kernel is subject to the Level Principle. Each
instruction appears to be an active entity that moves information from one place to
another. However, instructions are just data to the hardware, which interprets those
instructions and causes the information to move.

The converse of the Level Principle sometimes sheds new light as well. Objects
that appear as data can occasionally be seen as active objects in some sense. For exam-
ple, adding two numbers can be seen either as an action taken by some external agent or
as an action taken by the first of the numbers on the second. Such a novel approach does
make sense (the Smalltalk language is implemented this way!) and can lead to a useful

The kernel and processes 19

decomposition of work so that it can be distributed. We will discuss distributed work in
Chapter 9.

6 VIRTUAL MACHINES

Although most operating systems interpret the Beautification Principle to mean that
processes should have an enhanced or simplified view of the hardware, some take a dif-
ferent tack. They make the process interface look just like the hardware interface. In
other words, a process is allowed to use all the instructions, even the privileged ones.
The process interface is called avirtual machine because it looks just like the underly-
ing machine. The kernel of such an operating system is called avirtualizing kernel.
We will devote some attention to this style of operating system because it clearly shows
the interplay of traps, context switches, processor states, and the Level Principle.

Virtual machine operating systems are both useful and complex. They are useful
because they allow operating system designers to experiment with new ideas without
interfering with the user community. Before virtual machine operating systems, all
operating system testing had to be performed on separate machines dedicated to that pur-
pose. Any error in the kernel, no matter how trivial, could bring the entire operating sys-
tem down. Any user unfortunate to be running programs at that time could lose a
significant amount of work. With a virtual machine operating system, the test version of
the operating system can run as a process controlled by the virtualizing kernel. The other
processes, which are running ordinary programs, are not affected by errors in the test ver-
sion. The only effect is that they don’t run quite as fast, because the test version com-
petes with them for resources. This arrangement is shown in Figure 1.9.

4321 PPPP

V

test kernel

virtual devices

physical devices

virtualizing kernel

other processestest operating system

Figure 1.9 Testing a new operating system

20 Introduction Chapter 1

A second use of virtual machine operating systems is to integrate batch and
interactive modes by letting them occupy different virtual machines. This scheme,
shown in Figure 1.10, can be a fast way to piece together two fundamentally different
operating systems for the same machine.

The ability to run several operating systems at once on the same machine has other
advantages as well.

� It can alleviate the trauma of new operating system releases, since the old release
may be used on one of the virtual machines until users have switched over to the
new release, which is running on a different virtual machine under the control of
the same virtualizing kernel.

� It can permit students to write real operating systems without interfering with the
other users of the machine.

� It can enhance software reliability by isolating software components in different
virtual machines.

� It can enhance security by isolating sensitive programs and data to their own vir-
tual machine.

� It can test network facilities, such as those discussed in Chapter 9, by simulating
machine-machine communication between several virtual machines on one physi-
cal machine.

� It can provide each user with a separate virtual machine in which a simple single-
user operating system runs. Designing and implementing this simple operating
system can be much easier than designing a multi-user operating system, since it
can ignore protection and multiprogramming issues. The CMS (Conversational
Monitor System) operating system for the IBM 370 computer, for example, is usu-
ally run in a virtual machine controlled by the VM/ 370 virtualizing kernel. CMS
provides only one process and very little protection. It assumes that the entire
machine is at the disposal of the user. Under VM/ 370, a new virtual machine is

kernel

virtual devicesvirtual devices

kernel

virtualizing kernel

physical devices

V

P P
1 2

batch operating system interactive operating system

Figure 1.10 Integrating two operating systems

Virtual machines 21

created for each user who logs on. Its control panel is mapped onto the user’s ter-
minal, and buttons are ‘‘pushed’’ by typing in appropriate commands. These com-
mands allow for initial program load (to start up CMS, for instance) and for inter-
rupting the virtual machine.

Virtual-machine operating systems are complex. To provide acceptable speed, the
hardware executes most instructions directly. One might think that the virtualizing ker-
nel V can run all its processesPi in privileged state and let them use all the hardware
instructions. However, privileged instructions are just too dangerous to let processes use
directly. What if Pi executes the halt instruction? Instead,V must run allPi in non-
privileged state to prevent them from accidentally or maliciously interfering with each
other and withV itself. In fact, virtual-machine operating systems cannot be imple-
mented on computers where dangerous instructions are ignored or fail to trap in non-
privileged state. For example, the PDP-11/45 in non-privileged state fails to trap on
several dangerous instructions. In general, an instruction is dangerous if it performs
transput, manipulates address-translation registers (discussed in Chapter 3), or manipu-
lates the processor state (including interrupt-return instructions and priority setting
instructions).

To let Pi imagine it has control of processor states, even though it does not,V
keeps track of the virtual processor state of eachPi , that is, the processor state of the vir-
tual machine thatV emulates on behalf ofPi . This information is stored inPi ’s context
block inside ofV. All privileged instructions executed byPi cause traps toV, which
then emulates the behavior of the bare hardware on behalf ofPi .

� If Pi was in virtual non-privileged state,V emulates a trap forPi . This emulation
puts Pi in virtual privileged state, although it is still run, as always, in physical
non-privileged state. The program counter forPi is reset to the proper trap address
within Pi ’s virtual space. (We will see in Chapter 3 how virtual space is managed
for virtual machine operating systems.) We say thatV hasreflected the trap toPi .

� If Pi was in virtual privileged state,V emulates the action of the instruction itself.
For example, it terminatesPi on a halt instruction, and it executes transput instruc-
tions interpretatively.

Some dangerous instructions are particularly difficult to emulate. Transput can be
very tricky. Channel programs (discussed in Chapter 5), which control some sophisti-
cated transput devices, must be translated and checked for legality. Self-modifying chan-
nel programs are especially hard to translate. The virtualizing kernel may wish to simu-
late one device by another, for example, simulating a printer on a disk or a small disk on
a part of a larger one. A device-completion interrupt can indicate that a transput opera-
tion started on behalf of somePi has terminated. In this case, the interrupt must be
reflected to the appropriatePi . In contrast, emulating a single transput operation forPi
may require several transput operations, so device-completion interrupts often indicate
thatV may proceed to the next step of emulating an operation already in progress. Such
interrupts are not reflected. If the computer communicates with devices through registers
with addresses in main store, all access to that region of store must cause traps so thatV
can emulate the transput. Address translation also becomes quite complex. We will
defer discussing this subject until Chapter 3.

22 Introduction Chapter 1

A good test of a virtualizing kernel is to let one of its processes be another virtual-
izing kernel. This arrangement can also be useful to test out a new version ofV. How-
ever, dangerous operations can be quite slow when there are many levels. The number of
reflections grows exponentially with the number of levels. For example, consider Figure
1.11, in which there are two levels of virtualizing kernel,V1 andV2, above which sits an
ordinary operating system kernel,OS, above which a compiler is running. The compiler
executes a single service call (marked*) at time 1. As far as the compiler is concerned,
OS performs the service and lets the compiler continue (markedc) at time 29. The
dashed line at the level of the compiler indicates the compiler’s perception that no
activity below its level takes place during the interval.

From the point of view ofOS, a trap occurs at time 8 (marked by a dot on the
control-flow line). This trap appears to come directly from the compiler, as shown by the
dashed line connecting the compiler at time 1 and the OS at time 8.OS services the trap
(marked s). For simplicity, we assume that it needs to perform only one privileged
instruction (markedp) to service the trap, which it executes at time 9. Lower levels of
software (whichOS cannot distinguish from hardware) emulate this instruction, allowing
OS to continue at time 21. It then switches context back to the compiler (markedb) at
time 22. The dashed line fromOS at time 22 to the compiler at time 29 shows the effect
of this context switch.

The situation is more complicated from the point of view ofV2. At time 4, it
receives a trap that tells it that its client has executed a privileged instruction while in vir-
tual non-privileged state.V2 therefore reflects this trap at time 5 (markedr) back toOS.
Later, at time 12,V2 receives a second trap, this time because its client has executed a
privileged instruction in virtual privileged state.V2 services this trap by emulating the
instruction itself at time 13. By time 17, the underlying levels allow it to continue, and at
time 18 it switches context back toOS. The last trap occurs at time 25, when its client
has attempted to perform a context switch (which is privileged) when in virtual
privileged state.V2 services this trap by changing is client to virtual non-privileged state
and switching back to the client at time 26.

V1 has the busiest schedule of all. It reflects traps that arrive at time 2, 10, and 23.

*

s p

p

p

sb bb

b

c

c

c

302520151050

s

s

s r

b

br

s

r

s

s br

2

1
V

V

OS

Compiler

Figure 1.11 Emulating a service call

Virtual machines 23

(The trap at time 23 comes from the context-switch instruction executed byOS.) It emu-
lates instructions for its client when traps occur at times 5, 14, 19, and 27.

This example demonstrates the Level Principle: Each software level is just a data
structure as far as its supporting level is concerned. It also shows how a single privileged
instruction in the compiler became two privileged instructions inOS (p and b), which
became four inV2 (r, p, b, andb) and eight inV1. In general, the situation can be far
worse. A single privileged instruction at one level might require many instructions at its
supporting level to emulate it.

The virtualizing kernel can be complex, and the emulation of privileged instruc-
tions can be slow. These drawbacks can be mitigated to some extent.

� Don’t try to emulate one device by another.
� Disallow some features, such as self-modifying channel programs. Of course, such

a design will compromise the purity of the virtual machine and will make it harder
to transfer programs from bare machines to run under the virtual-machine operat-
ing system.

� Provide some extra features so that processes won’t have to use as many privileged
instructions. A certain amount of file support (discussed in Chapter 6) could help.
This design makes it harder to transfer programs from the virtual-machine operat-
ing system to a bare machine.

� Use special hardware to pass traps directly to the correct software level. The IBM
370 has some hardware support for VM/ 370, for example.

7 FURTHER READING

A number of other operating system textbooks are available. Brinch Hansen’s early text
(1973) is especially good in its treatment of concurrency issues. Another early classic
was written by Madnick and Donovan (1972). The standard texts by Shaw (1974) and
Habermann (1976) are full of useful details. Calingaert (1982) presents an overview of a
large number of subjects, whereas Turner (1986) shows a few essential subjects in some
depth. Excellent texts are by Deitel (1983) and by Peterson and Silberschatz (1985).
Some advanced subjects can be found in a new book by Maekawa (1987). Beck’s book
on systems programming (1985) devotes an excellent chapter to operating systems.
Recently, several books have appeared that cover both the theory of operating systems
and an annotated listing of a Unix-like kernel. These texts, including two by Comer
(1984; 1987) and one by Tanenbaum (1987), are an excellent source of information about
operating systems and how to build them. Books describing the internals of particular
operating systems, such as the book on VMS by Kenah and Bate (1984), are often full of
fascinating detail.

The distinction between mechanism and policy was championed by the Hydra
operating system (Levinet al., 1977). The Modula programming language that we use in
examples was defined by Wirth (1972). It is based on his earlier language Pascal (Jensen
and Wirth, 1974). Virtual machines are discussed in a survey article by Goldberg (1974),

24 Introduction Chapter 1

and a case study for the PDP-11 is described by Popek (1975).

8 EXERCISES

1. Compute the utilization for open shop. We define theutilization u as the fraction
of time used for computation. Assume that a typical job requiresr = 10 seconds to
read in from cards,c = 3 seconds to compute andp = 30 seconds to print the
results on paper. Programmers sign up for 15-minute slots and run their programs
twice per slot.

2. Compute the utilization for the same situation, using operator-driven shop.
Assume that an operator takess = 30 seconds to remove the output from one job
and set up the next job. There are enough jobs to ensure that the operator always
has another job to start as soon as one finishes.

3. Compute the utilization for the same situation, using offline transput. Assume that
it takes only 1/100 as long to read information from tape as from cards and only
1/100 as long to write information to tape as to paper. The resident monitor takes
s = 0.1 seconds to reset the machine between jobs. The operator spends 60
seconds to unload and load tapes after every ten jobs. There are several offline
computers, so there is no bottleneck reading jobs and printing results.

4. Compute the utilization for the same situation, using spooling. Assume that the
computer has enough card readers and printers so that there are always jobs wait-
ing to be run and printing is not a bottleneck. It takes only 1/1000 as long to read
or write information from or to disk as from or to cards or paper. The computer
spends 1 percent of its time servicing interrupts for transput; this time is not
counted as computation time. It takess = 0.01 seconds to reset the machine
between jobs.

5. Construct formulas for exercises 1−4 that describe the utilization in terms of the
parametersr , c , p , ands .

6. Find out what computers are available at your institution and discover whether they
use spooling, batch, interactive, or some other kind of computing.

7. In an interactive multiprogramming situation, several people could be running the
same program at once. Would there be one process or many to support this situa-
tion?

8. If two processes are using the very same main storage, what data do theynot
share?

9. Throughout the book, we will suggest various service calls that the kernel may pro-
vide. Suggest a few that you think every kernel should have.

10. How can a user submit a service call?

Exercises 25

11. How can a device submit a service call?

12. Does a service call always require a context switch? Does it always require a pro-
cess switch?

13. When a device interrupts, is there always a context switch?

14. Describe the user in two ways, using the Level Principle.

15. Is the Pascal compiler part of the kernel?

16. Is the code that causes the disk to send some data into main store part of the ker-
nel?

17. Experiment to find out what restrictions your installation places on passwords.
Does it disallow passwords that are too simple? Does it prevent you from making
very long passwords?

18. Three conventions for communicating the arguments of a service call to the kernel
are to place them on a stack, in registers, or right after the call. What are the
advantages and disadvantages of these three strategies?

19. In the example of virtual machines, with a compiler above an operating system
above two levels of virtualizing kernel, how many privileged instructions would be
executed at each level if the instruction executed by the compiler can be emulated
without use of privileged instructions by the operating system?

26 Introduction Chapter 1

chapter 2

TIME MANAGEMENT

The first resource we will discuss is time. Time management is usually calledschedul-
ing. The goal of scheduling is to provide good service to all the processes that are
currently competing for the computing resource, that is, the execution of instructions.
We can distinguish several classes of scheduling based on how often decisions must be
made.

Long-term scheduling decides which jobs or job steps to start next. In a spooling
system, this decision is made when a job finishes and is based on the order in which other
jobs have arrived and on their priorities. In batch multiprogramming, the decision may
be based on the different requirements of the competing jobs and the resources currently
available. Interactive multiprogramming often does not have this level of scheduling at
all; it is up to the user to decide which job steps to run. We will not discuss long-term
scheduling as such in this book, but Chapter 4 is devoted to some of the resource-
contention issues that are central to that subject.

Medium-term scheduling decides which running processes toblock (deny ser-
vice) temporarily, because resources (such as main store) are overcommitted or because a
resource request cannot be satisfied at the moment. Chapter 3 discusses the intricacies of
space management and describes policies for medium-term scheduling.

Short-term scheduling, the subject of this chapter, decides how to share the com-
puter among all the processes that currently want to compute. Such decisions may be
made frequently (tens of times each second) to try to provide good service to all the
processes. When the medium- or long-term scheduler readies a process or when a trans-
put event that the process is waiting for finishes, the process arrives in the domain of the
short-term scheduler. It stays there until it terminates, it waits for transput, or a higher-
level scheduler decides to block it. Processes generally alternate between a computing
burst, during which they are in the short-term scheduler, and a transput burst, during
which they are in a wait list.

Figure 2.1 shows these three levels of scheduling. Within the domain of short-term
scheduling, a process may be either running or ready to run. The short-term scheduler is
in charge of deciding which ready process should be running at any time. Within the

27

main-store wait

short term

ready

transput wait

run

ready

medium term

ready

long term

Figure 2.1 Three levels of scheduling

domain of medium-term scheduling, a process may be running (that is, it may have
entered the domain of the short-term scheduler), may be ready to run, or may be waiting
for some resource like transput. The medium-term scheduler is in charge of deciding
when ready processes should be allowed to enter the domain of the short-term scheduler
and when they should leave that domain. This decision is based on an attempt to prevent
overcommitment of space, as we will see in Chapter 3, as well as a desire to balance
compute-bound processes with transput-bound processes. The long-term scheduler dis-
tinguishes between ready and running processes.

We have already seen the distinction between compute-bound and transput-bound
processes. From the point of view of the short-term scheduler, a compute-bound process
remains in view for a long time, since it does not terminate soon and seldom waits for
transput. For this reason, we will call compute-bound processeslong processes.

In contrast, a transput-bound process comes and goes very quickly, since it disap-
pears from the view of the short-term scheduler as soon as it waits for transput. A pro-
cess that interacts heavily with the user tends to be transput-bound. The user gives it a
command, which it interprets and acts on. Shortly thereafter, the process is ready to
receive the next command. The user, however, is still puzzling over the response to the
previous command. The process spends most of its time waiting for the user to submit
the next command and only a little time computing in response to the command. Text
editor programs usually exhibit this sort of behavior. Other transput-bound processes are
not interactive at all but spend a lot of time bringing data in from devices or sending data
back out, performing very little computation in between. Programs written in Cobol
often have this flavor. Both kinds of transput-bound process are similar in that small
amounts of computation are sandwiched between longer periods of waiting. For this rea-
son, we will call themshort processes.

28 Time Management Chapter 2

It is important to give special service to interactive processes, because otherwise
the user might get very frustrated. A user interacting with a process would ideally like to
see an immediate response to every command. Failing that, ‘‘consistent’’ response is
better than good average response. Response that always takes about 2 seconds is better
than response that averages about 1 second but occasionally takes 10 or only 0.5. For-
mally, a low variance of response time is better than a low mean.

Transput-bound processes must also be given special treatment. Here the mean is
more important than the variance. Let’s take as an example a process that needs to com-
pute for 1 millisecond and then waits 20 milliseconds for transput. This sequence repeats
1000 times. In total, the process needs 1 second of computation and 20 seconds of trans-
put, a total of 21 seconds. But if it is delayed half a second every time it becomes ready,
it will take 521 seconds. Even if some delays are longer, a small average delay will pay
off handsomely. A 1-millisecond average delay will allow the process to finish in 22
seconds.

1 GOALS, MEASURES, AND ASSUMPTIONS

As mentioned earlier, there are several competing goals that scheduling policies aim to
fulfill. One is ‘‘good throughput’’ — getting lots of work done. For short-term schedul-
ing, good throughput means minimizing the number of process switches, because each
one costs some time during which no productive work is accomplished.

The other goal is ‘‘good service.’’ We can be more precise by defining three
related measures that tell how well we are treating a particular process. Say a processp
requirest time in execution before it can leave the ready list because it will either finish
or will need to wait for something. Then we define the following service measures for
that process.

response time T : time thatp is present; finish time− arrival time
missed time M : T − t
penalty ratio P : T / t
response ratio R : t / T

The response time T counts not only how longp needs, but also how long it sits in the
ready list while other processes are run. It might wait its turn for a while. Once it starts,
we might be nasty and stop it after some time, letting it continue later. The entire time
that processp is on the ready list (until it leaves our view to go to other lists) is charged
to T . The process is not visible to the short-term scheduler while it is waiting for trans-
put or other resources, and therefore such wait time is not included inT .

The missed time M is the same thing, except we don’t count the amount of time
during whichp is actually running.M measures the amount of time during whichp
would like to run but is prevented.

The response ratio R and thepenalty ratio P are inverses of each other.R
represents the fraction of the time thatp is receiving service. If the response ratioR is 1,
thenp never sits in the ready list while some other process runs. If the response ratioR
is 1/100, thenP = 100 and the process seems to be taking 100 times as long as it should;

Goals, measures, and assumptions 29

the user may be annoyed. A response ratio greater than 1 doesn’t make any sense. Simi-
larly, the penalty ratioP ranges from 1 (which is a perfect value) upward.

If we are discussing a class of processes with similar requirements, like short
processes or long processes, we extend this notation as follows.

T (t): average response time for processes needingt time
M (t): T (t) − t
P (t): T (t) / t
R (t): t / T (t)

If the average response measures turn out to be independent oft , we will just write T (),
M (), P (), andR ().

We will also refer on occasion to kernel time and idle time.Kernel time is the
time spent by the kernel in making policy decisions and carrying them out. This figure
includes context-switch and process-switch time. A well-tuned operating system tries to
keep kernel time between 10 and 30 percent.Idle time is spent when the ready list is
empty and no fruitful work can be accomplished.

One surprising theoretical result sheds light on the tradeoff between providing
good service to short and to long processes. It turns out that no matter what scheduling
method you use, if you ignore context- and process-switching costs, you can’t help one
class of jobs without hurting the other class. In fact, a minor improvement for short
processes causes a disproportionate degradation for long processes. We will therefore be
especially interested in comparing various policies with respect to how well they treat
processes with different time requirements.

The values we will get for the service measures under different policies will
depend on how many processes there are, how fast they arrive, and how long they need
to run. A fairly simple set of assumptions will suffice for our purposes. First, we will
assume that processes arrive (into the view of the short-term scheduler) in a pattern
described by theexponential distribution. One way to describe this pattern is to say
that no matter how recently the previous process arrived, the next one will arrive withint
time with probability 1−e −αt . As t goes to infinity, this probability goes to 1−e −∞=1.
The average time until the next arrival is 1/α. Another way to describe this pattern is to
say that the probability thatk processes will arrive within one time unit ise −ααk / k !.
The reason we pick this particular distribution is that even though it looks forbidding, it
turns out that the exponential distribution is the easiest to deal with mathematically and
still mirror the way processes actually do arrive in practice. The symbolα (‘‘alpha’’) is a
parameter of the distribution, which means that we adjustα to form a distribution with
the particular behavior we want. We callα the arrival rate, since asα increases,
arrivals happen more frequently. Figure 2.2 shows the exponential distribution for vari-
ous values ofα. The exponential distribution ismemoryless: The expected time to the
next arrival is always 1/α, no matter how long it has been since the previous arrival.
Observations on real operating systems have shown that the exponential arrival rate
assumption is reasonable.

Our second assumption is that the service time required by processes also follows
the exponential distribution, this time with parameterβ (‘‘beta’’):

Probability(k processes serviced in one time unit)= e −ββk / k !

The memoryless property here implies that the expected amount of time still needed by
the current process is always 1/β, no matter how long the process has been running so
far.

30 Time Management Chapter 2

α = 10

α = 5

α = 3

105
k

Probability of

k arrivals

in 1 time unit

Figure 2.2 Probability ofk arrivals under the exponential distribution

We will often combineα and β to form ρ (‘‘rho’’), the saturation level, which
represents how busy the computer is on the average. We defineρ to beα / β. If ρ is 0,
new processes never arrive, so the machine is completely idle. Ifρ is 1, processes arrive
on the average just exactly at the same rate as they can be finished. Ifρ is greater than 1,
processes are coming faster than they can be served. In this last case, we would expect
the ready list to get longer and longer. In fact, even ifρ is just 1, the expected length of
the ready list is unbounded. The value ofρ affects the response measures differently for
different scheduling policies. We will therefore express these measures in terms ofρ.

As you can see, the formal study of time management involves a certain amount of
mathematics. It is important to realize that any comparison of policies requires that there
be a way of describing their behavior (such asR) and a wayto characterizethe situation
in which the policies are measured (such as the distribution of service times). We will
express the behavior of various policies using the notation just presented but will omit all
the derivations. We will discuss formal analysis later in the Perspective section.

2 POLICIES

As we have seen, short-term scheduling refers to allocating time to processes that are in
the ready list. Every time a processarrives at the ready list, we will treat it as a new pro-
cess. It may truly be a new process, but more often it is an old one that has been brought
back to the ready list from outside the short-term scheduler. It may have returned
because the transput it was waiting for has completed, some resource it was requesting
has been granted, or the medium-term scheduler has decided to favor it. Every time it
leaves the ready list, either because it has terminated or because it must wait for some-
thing like transput, we will forget about the process. We will say that the process has
departed when we do not need to state why it has left. This narrow view will allow us to
concentrate on the fundamentals of short-term scheduling.

Policies 31

Unfortunately, no policy is truly fair. Any improvements in performance for one
class of processes is at the expense of degraded performance for some other class. We
will therefore examine how policies treat a wide range of classes. For each policy, we
will first show its behavior for a simple set of processes:

���

Process name Arrival time Service required���

A 0 3
B 1 5
C 3 2
D 9 5
E 12 5���

�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

This set depicted in Figure 2.3.

1712

149

53

61

30

E

D

C

B

A

20151050

Figure 2.3 Processes requiring service

The time units are not important; if we like, we can imagine they are seconds. We
assume that the arrival time and service time required are whole numbers of whatever
unit we have picked.

Second, we will compare scheduling policies by simulating them for a large
number of arrivals. Figure 2.4 shows the penalty ratio for many of the policies we will
study as a function of time required. This figure is based on a simulation of 50,000
processes. Service times were randomly drawn from an exponential distribution with
β = 1.0, and arrival rates were similarly drawn from an exponential distribution with
α = 0.8. The saturation level was thereforeρ = 0.8. Statistics were gathered on each pro-
cess except for the first 100 to finish in order to measure thesteady state, which is the
behavior of a system once initial fluctuations have disappeared. Processes were categor-
ized into 100 service-time percentiles, each of which had about 500 processes. The aver-
age penalty ratio for each percentile is graphed in the figure. The lines in the graph have
been smoothed slightly (simulation results are somewhat bumpy).

The average service time needed by processes in each percentile is shown in Fig-
ure 2.5. Figure 2.6 shows the missed time for each percentile under the various methods.

32 Time Management Chapter 2

1

10

100

FCFS

FCFS

HPRN

HPRN

SPN
SPN

RR RR

FB

FB

PSPN

PSPN

Percentile of time required

Penalty ratio

1009080706050403020100

Figure 2.4 Penalty ratios of short-term scheduling policies

Time required

Percentile of time required

6

5

4

3

2

1

0

0 10 20 30 40 50 60 70 80 90 100

Figure 2.5 Average service time for each percentile

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

FCFS
FCFS

SPN

SPN

PSPN

HPRN

HPRN

FB

FB

RR

RR

Missed time

Percentile of time required

Figure 2.6 Missed time for short-term scheduling policies

Although these simulation results only display the situation for one value ofρ, they pro-
vide useful insight into the general behavior of the algorithms we will study.

2.1 First come, first served (FCFS)

In keeping with the Law of Diminishing Returns, we will start with a method that has
horrid performance. Like many very poor methods, it is easy to dream up, easy to imple-
ment, and easy to disparage. Under FCFS, the short-term scheduler runs each process
until it departs. Processes that arrive while another process is being served wait in line in
the order that they arrive. This method is also called ‘‘first in, first out’’ (FIFO).

Figure 2.7 shows how FCFS schedules our standard set of processes. The dark
regions indicate missed time for each process.

34 Time Management Chapter 2

0 5 10 15 20

A

B

C

D

E

A B C D E

0

20

153

8

10

1

3

9

12

Figure 2.7 FCFS schedule

The following table shows the same information.

��

Process Arrival Service Start Finish
name time required time time T M P

��

A 0 3 0 3 3 0 1.0
B 1 5 3 8 7 2 1.4
C 3 2 8 10 7 5 3.5
D 9 5 10 15 6 1 1.2
E 12 5 15 20 8 3 1.6��

Mean 6.2 2.2 1.74���
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

FCFS is an example of anon-preemptive policy, which means that we never
block a process once it has started to run until it leaves the domain of the short-term
scheduler. (We might terminate a process that has exceeded an initial time estimate, but
such termination is different from preemption.) The decision of when to run a particular
process is based solely on the relative order in which it arrives at the ready list.

Non-preemptive policies are an example of theHysteresis Principle, which we
will encounter repeatedly.

��������������������������������

Hysteresis Principle��������������������������������

Resist change.���������������������������������
�
�
�

�
�
�
�

All change has a cost. In our case, preemption involves switching to a new process,
which requires updating software tables and often hardware tables as well. Non-
preemptive scheduling policies avoid the cost of change by resisting process switching
until it is inevitable.

Policies 35

How well does FCFS work? Long processes love it, and short ones hate it. To see
why, assume that four processes enter the ready list at almost the same time. They
require 1, 100, 1, and 100 seconds, respectively. Here is how the measures come out:

��

Process Arrival Service Start Finish
name time required time time T M P

��

A 0 1 0 1 1 0 1.00
B 0 100 1 101 101 1 1.01
C 0 1 101 102 102 101 102.00
D 0 100 102 202 202 102 2.02��

Mean 101.5 51.0 28.1��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

The penalty ratioP for processC is indefensible. Any short process caught behind a
long one will suffer a wait time much longer than the time it really needs to execute.
Long processes, in contrast, will generally receive reasonable values forP , even if they
have to wait behind a few other processes. ProcessD had to wait but still got a pretty
good penalty ratio.

The penalty ratio for FCFS, as seen in Figure 2.4, is very bad for short processes.
One third of all processes have a penalty ratio worse than 10. The upper 10 percent of all
processes, however, find FCFS has an excellent penalty ratio (less than 2.5).

The amount of missed time under FCFS is fairly equitable, as seen in Figure 2.6.
All classes of processes had about the same missed time: 4 seconds. This result stands to
reason. The amount of missed time for some process depends on the processes ahead of
it in the ready list and is independent of the amount of service the process itself needs.

Given our assumptions that both arrival and service time fit an exponential distri-
bution, we can express the behavior of the first come, first served scheduling policy
analytically, without resorting to simulation.

M () =
β(1−ρ)

ρ������� T (t) = t +
β(1−ρ)

ρ������� P (t) = 1+
t β(1−ρ)

ρ��������

These formulas represent averages, and only hold for the steady state. The first formula
predicts our simulated result thatM = 4, independent oft . The third formula predicts our
result that the penalty ratio is high for short processes and low for long processes.

What if ρ > 1? FCFS eventually services every process, although the missed time
gets longer and longer asρ remains above 1. (Actually,ρ cannot remain higher than 1
for very long, since the rate at which processes arrive at the short-term scheduler depends
to some extent on the rate at which they leave. We do not actually have an infinite popu-
lation of processes.) We will see that some other methods do not guarantee eventual ser-
vice. The situation in which a process is ready to run but never gets any service is called
starvation. Starvation while waiting for other resources besides time is discussed in
Chapters 4 and 8.

36 Time Management Chapter 2

2.2 Round robin (RR)

Our next example,round robin, is a vast improvement over FCFS. The intent of round
robin is to provide good response ratios for short processes as well as long processes. In
fact, it provides identical average response ratio for all processes, unlike FCFS, which
provides identical average response time.

The round robin policy services a process only for a singlequantum q of time.
Typical values ofq range between 1/60 and 1 second. If the process has not finished
within its quantum, it is interrupted at the end of the quantum and placed at the rear of the
ready queue. It will wait there for its turn to come around again and then run for another
quantum. This periodic interruption continues until the process departs. Each process is
therefore serviced in bursts until it finishes. New arrivals enter the ready queue at the
rear.

Round robin can be tuned by adjusting the parameterq . If we setq so high that it
exceeds the service requirement for all processes, RR becomes just like FCFS. Asq
approaches 0, RR becomes likeprocessor sharing (PS), which means that every process
thinks it is getting constant service from a processor that is slower proportionally to the
number of competing processes. The Hysteresis Principle tells us that we should resist
such frequent switching. In fact, PS is only theoretically interesting, because asq
approaches 0, process switching happens more frequently, and kernel time rises toward
100 percent. The trick is to setq small enough so that RR is fair but high enough so that
kernel time is reasonable.

Figure 2.8 shows how RR schedules our sample processes for bothq = 1 and
q = 4. If a process finishes during its quantum, another process is started immediately
and is given a full quantum. Newly arrived processes are put at the end of the ready list.
If a process arrives at the same time as a quantum finishes, we assume that the arrival
occurs slightly before the quantum actually expires.

Policies 37

C

C

C

q = 4

q = 1

EDEDBBA

E

D

B

A

20151050

CC EEEEE DDDDD BBBBB AAA

E

D

B

A

20151050

0 3

1

3

9

12

0 3

1

3

9

12

6

8

11

18

20

20

9

10

19

Figure 2.8 RR Schedule

The statistics for RR are therefore as follows.

q = 1

��

Process Arrival Service Finish T M P
name time required time��

A 0 3 6 6 3 2.0
B 1 5 11 10 5 2.0
C 3 2 8 5 3 2.5
D 9 5 18 9 4 1.8
E 12 5 20 8 3 1.6��

Mean 7.6 3.6 1.98���
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

38 Time Management Chapter 2

q = 4

��

Process Arrival Service Finish T M P
name time required time��

A 0 3 3 3 0 1.0
B 1 5 10 9 4 1.8
C 3 2 9 6 4 3.0
D 9 5 19 10 5 2.0
E 12 5 20 8 3 1.6��

Mean 7.2 3.2 1.88���
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figures 2.4 and 2.6 display RR with a quantum of 0.1. The shortest 10 percent of
all processes can be serviced in one quantum. All other processes suffer a penalty ratio of
approximately 5. RR therefore penalizes all processes about the same, unlike FCFS,
which causes all processes to miss the same amount of time. Figure 2.6 shows that the
missed time is very small (on the order of one quantum) for very short processes and that
the missed time rises steadily as processes become longer.

Under PS, which is a limiting case of RR, we have the following service measures:

T (t) =
1−ρ

t���� P () =
1−ρ
1����

The second formula agrees with our observation that the penalty ratio has the value 5,
independent oft .

2.3 Shortest process next (SPN)

We have seen that RR improves the response ratio for short processes but that it requires
preemption to do so. The SPN method is an attempt to have the same effect without
preemption. Instead, it requires a different ingredient: explicit information about the
service-time requirements for each process. When a process must be selected from the
ready list to execute next, the one with the shortest service-time requirement is chosen.

How are these service times discovered? It obviously won’t do to execute the pro-
cess, see how long it takes, and then schedule it according to this knowledge. One alter-
native is to have the usercharacterize theprocess before it starts. For example, a process
could becharacterized astransput-bound or compute-bound. A highly interactive pro-
cess, such as a text editor, is transput-bound. A long simulation that uses internally gen-
erated random data is compute-bound. More precisely, the average service time needed
(averaged over each entry into the short-term scheduler) could be specified. It seems an
unreasonable burden to have the usercharacterize eachprocess. Processes could
describe themselves (in their load image, discussed in Chapter 3), but that description
would be at best a guess. Besides, processes often go through phases, some of which
require more computation between transput events and some of which require less.

Policies 39

Instead, the short-term scheduler can accumulate service statistics for each process
every time it departs. Say a given processp useds seconds of time during its most
recent stay in the short-term ready list. Then theexponential average ep can be updated
this way:

ep ′ := 0.9ep + 0.1s

The number 0.9 is called a ‘‘smoothing factor,’’ and may be set to a higher number (like
0.99) to make the estimate less responsive to change, or to a lower number (like 0.7) to
make the estimate more responsive to change. The initial estimate, for the first time the
process arrives, can be the average service time for all processes.

To demonstrate the SPN method, we will assume that the scheduler has complete
and accurate knowledge of the service requirement of each process. Our sample set of
processes is serviced as shown in Figure 2.9.

0 5 10 15 20

A

B

C

D

E

A C B D E

0 3

1

3 5

9

1210

15

20

Figure 2.9 SPN Schedule

Here are the statistics when these processes are scheduled under SPN:

���

Process Arrival Service Start Finish
name time required time time T M P

���

A 0 3 0 3 3 0 1.0
B 1 5 5 10 9 4 1.8
C 3 2 3 5 2 0 1.0
D 9 5 10 15 6 1 1.2
E 12 5 15 20 8 3 1.6���

Mean 5.6 1.6 1.32��
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

The response time under SPN is particularly good for short processes, as you might
expect. In contrast, long processes may wait a long time indeed, especially ifρ
approaches 1. Overall,T () andM () are lower under SPN than any method that does not
use a time estimate. Although analytic results are hard to derive, Figures 2.4 and 2.6, our

40 Time Management Chapter 2

simulation results, show that the penalty ratio and missed time for SPN are better than for
RR, except for the shortest 15 percent of all processes, where the figures are still far
better than for FCFS.

2.4 Preemptive shortest process next (PSPN)

We saw that RR achieves a good penalty ratio by using preemption, and that SPN does
even better by using extra information about each process. We would expect to do still
better by combining these techniques. The PSPN preempts the current process when
another process arrives with a total service time requirement less than the remaining ser-
vice time required by the current process. The value ofT (t) turns out to be lower than
for SPN for all but the longest 10 percent of all processes in our simulation of Figure 2.4.

Our five-process example behaves the same under SPN and PSPN; there is never
any preemption because short processes do not arrive near the start of execution of long
processes. Figures 2.4 and 2.6 show that for all but the longest 7 percent of all processes,
PSPN is better than SPN. It has an excellent penalty ratio, and the missed time stays very
low for a large majority of processes. Even for very long processes, PSPN is not much
worse than RR. In fact, PSPN gives the best achievable average penalty ratio because it
keeps the ready list as short as possible. It manages this feat by directing resources
toward the process that will finish soonest, and will therefore shorten the ready list
soonest. A short ready list means reduced contention, which leads to a low penalty ratio.

2.5 Highest penalty ratio next (HPRN)

Non-preemptive scheduling policies seem to give unfair advantage either to very long
processes (FCFS) or to very short ones (SPN). The HPRN method tries to be fairer and
still not introduce preemption. As a new process waits in the ready list, its value ofP ,
which starts at 1, begins to rise. After it has waitedw time on the ready list,
P = (w +t)/t . When an old process departs, the ready process with the highest penalty
ratio is selected for execution. As long as the saturation is not unreasonable (ρ < 1), the
HPRN method will not starve even very long processes, since eventually their penalty
ratio reaches a high value.

If t is not known, it can be estimated by an exponential average of service times
during previous compute bursts, as we discussed earlier. Alternatively, we can base the
HPRN method on a medium-term penalty ratio, which is (M +t)/t , where M is the total
time missed while the process has languished either on the short-term ready list or on a
medium-term main-store wait list (but not on a transput-wait list) andt is the total cpu
time used during previous compute bursts.

HPRN strikes a nice balance between FCFS and SPN. If we use the actual value of
t , our sample process set behaves the same under HPRN and FCFS. Our simulation,
reported in Figures 2.4 and 2.6, also used the actual value oft . HPRN fits neatly
between FCFS and SPN, for short processes, where HPRN is much like SPN; for

Policies 41

middle-length processes, where HPRN has an intermediate penalty ratio; and for very
long processes, where SPN becomes worse than FCFS but where HPRN is still in the
middle.

However, HPRN has some disadvantages. First, it is not preemptive, so it cannot
beat RR or PSPN for short processes. A short process that unluckily arrives just after a
long process has started executing will still have to wait a very long time. Second, it is
generally not as good as SPN (at least in our simulation), which uses the same tech-
niques: knowledge of process length without preemption. Third, HPRN is more expen-
sive to implement, since the penalty ratio must be calculated for every waiting process
whenever a running process completes.

2.6 Multiple-level feedback (FB)

The multiple-level feedback method splits the ready list into a number of queues: queue
0, queue 1, queue 2, and so on. Lower-numbered queues have higher priority. When the
current process is interrupted at the end of its quantum, a new process is selected from
the front of the lowest-numbered queue that has any processes. After a process has used
a certain number of quanta in its queue, it is placed at the end of the next-higher-
numbered queue. (The word‘‘feedback’’ in the name of this method refers to the fact
that processes can move from one queue to another.) In Figure 2.10, a process is allowed
only one quantum in its queue before being bumped to the next one. The statistics for
our process set are as follows.

20

19

18

7

6 12

9

3

1

0

queue555444 3333 22222 11111

ED EEEE DDDDCC BB BBB AAA

E

D

C

B

A

20151050

Figure 2.10 FB Schedule

42 Time Management Chapter 2

���

Process Arrival Service Finish T M P
name time required time���

A 0 3 7 7 4 2.3
B 1 5 18 17 12 3.4
C 3 2 6 3 1 1.5
D 9 5 19 10 5 2.0
E 12 5 20 8 3 1.6���

Mean 9.0 5.0 2.16��
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Short processes have priority over long ones, since they finish while still in the first
queue, whereas long processes eventually migrate to low priority queues.T () is the same
as for RR, so since short processes do better than under RR, long processes must do more
poorly. This prediction is borne out by the results in Figures 2.4 and 2.6. FB is better
than RR for about 80 percent of all processes but worse for the longest 20 percent.

The FB method has several variations.
(1) Let the quantum size depend on the queue. A queue numberedn could have a

quantum of length 2n q , whereq is the ‘‘basic quantum’’ size. Therefore, the
queues have quanta of sizesq , 2q , 4q , 8q , and so on. The quantum given to any
process is based on the queue it is taken from. A process that needs a long time
suffers process switches after timesq , 3q , 7q , 15q , and so on. The total number
of process switches is therefore log(t (p) / q) instead oft (p) / q , which is the
number needed by RR. Therefore, this method reduces process switch overhead
while still behaving much like RR.

The quantum length could be calculated by slower-growing functions, such as
n .q . Such functions keep the quantum size within reasonable bounds while still
reducing the total number of process switches needed for long processes.

Figure 2.11 shows how our sample processes are treated with exponentially
growing quanta.

Policies 43

0 5 10 15 20

A

B

C

D

E

A B A C B C B D D E DE E

0 0 0 0 01 1 1 1 12 2 2 queue

0

1

3

9

12

4

8

10

18

20

Figure 2.11 Exponential FB schedule

The statistics for our process set are as follows.

��

Process Arrival Service Finish T M P
name time required time��

A 0 3 4 4 1 1.3
B 1 5 10 9 4 1.8
C 3 2 8 5 3 2.5
D 9 5 18 9 4 1.8
E 12 5 20 8 3 1.6��

Mean 7.0 3.0 1.8���
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

(2) Let a process in queuen be scheduled by RR for 2n (or perhaps justn) quanta
before being demoted to the next queue.

(3) Promote a process to a higher-priority queue after it spends a certain amount of
time waiting for service in its current queue.

(4) Instead of granting absolute priority to low-numbered queues, grant slices of time
to each queue, with lower-numbered queues receiving larger slices.

These variants can be used by themselves or in any combination.

2.7 Selfish round robin (SRR)

The selfish round robin method adds a new dimension to round robin by giving better
service to processes that have been executing for a while than to newcomers. Processes
in the ready list are partitioned into two lists:new andaccepted. New processes wait.
Accepted processes are serviced by RR. Thepriority of a new process increases at rate
a . The priority of an accepted process increases at rateb . Both a and b are

44 Time Management Chapter 2

parameters; that is, they can be adjusted to tune the method. When the priority of a new
process reaches the priority of an accepted process, that new process becomes accepted.
If all accepted processes finish, the highest priority new process is accepted.

Assume that there are no ready processes, when the first one,A, arrives. It has
priority 0 to begin with. Since there are no other accepted processes,A is accepted
immediately. After a while another process,B, arrives. As long asb / a < 1, B’s priority
will eventually catch up toA’s, so it is accepted; now bothA andB have the same prior-
ity. We can see that all accepted processes share a common priority (which rises at rate
b); that makes this policy easy to implement. Even ifb / a > 1, A will eventually finish,
and thenB can be accepted.

Adjusting the relative values ofa andb has a great influence on the behavior of
SRR. If b / a ≥ 1, a new process is not accepted until all the accepted processes have
finished, so SRR becomes FCFS. Ifb / a = 0, all processes are accepted immediately, so
SRR becomes RR. If 0 <b / a < 1, accepted processes are selfish, but not completely.

To demonstrate how SRR schedules our running example, let us seta = 2 and
b = 1. If a new process achieves the priority of the accepted processes at the end of a
quantum, we place it on the ready list first and then preempt the running process. Figure
2.12 shows the resulting schedule, including the priority of each process at the end of
each quantum. The letter d indicates that the process is done.

0 5 10 15 20

A

B

C

D

E

A C B C D E

0 1 2

0 2 3 4 5 6 7 8

0 2 4 6 7 8

9

0 2 3 4 5 6

0 2 4 6 7 8 9 10

B A

3

B B

d

d

d

d

d

A

B

C

D

E

0

1

3

9

12

4

9

10

15

20

Figure 2.12 SRR Schedule

The statistics for our process set are as follows.

Policies 45

���

Process Arrival Service Finish T M P
name time required time���

A 0 3 4 4 1 1.3
B 1 5 10 9 4 1.8
C 3 2 9 6 4 3.0
D 9 5 15 6 1 1.2
E 12 5 20 8 3 1.6���

Mean 6.6 2.6 1.79��
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

2.8 Hybrid methods

All sorts of methods can be invented by combining ones that we have mentioned. Here
are some examples.
(1) Use FB up to a fixed numberz of quanta; then use FCFS for the last queue. This

method reduces the number of process switches for very long processes.
(2) Use RR up to some number of quanta. A process that needs more time is put in a

second run queue that is treated with SRR scheduling. Very long processes are
eventually placed in a third queue that uses FCFS. RR could have absolute
predence over SRR, which hasprecedence overFCFS, or each could have a fixed
percentage of total time.

2.9 State-dependent priority methods

These three methods adjust parameters based on the current state.
(1) Use RR. However, instead of keeping the quantum constant, adjust it periodi-

cally, perhaps after every process switch, so that the quantum becomesq / n ,
wheren is the size of the ready list. If there are very few ready processes, each
gets a long quantum, which avoids process switches. If there are very many, the
algorithm becomes more fair for all, but at the expense of process switching.
Processes that need only a small amount of time get a quantum, albeit a small
one, fairly soon, so they may be able to finish soon. The quantum should not be
allowed to drop below some given minimal value so that process switching does
not start to consume undue amounts of time.

(2) Give the current process an extra quantum whenever a new process arrives. The
effect of this gift is to reduce process switching in proportion to the level of
saturation.

(3) Some versions of Unix use the following scheduling algorithm. Every second an
internal priority is calculated for each process. This priority depends on the
external priority (set by the user) and the amount of recent time consumed. This

46 Time Management Chapter 2

latter figure rises linearly as the process runs and decreases exponentially as the
process waits (whether because of short-term scheduling or other reasons). The
exponential decay depends on the current load (that is, the size of the ready list);
if the load is higher, the central processing unit (cpu) usage figure decays more
slowly. Processes with higher recent cpu usage get lower priorities than those
with lower recent cpu usage. The scheduler runs the process with the highest
priority in the ready list. If several processes have the same priority, they are
scheduled in RR fashion.

2.10 External priority methods

These three methods adjust parameters on the basis of some external priority.
(1) Use RR, but let the quantum depend on the external priority of the process. That

is, allow larger quanta for processes run for a user willing to pay a premium for
this service.

(2) The Worst Service Next (WSN) method is a generalization of many others.
After each quantum, compute for each process how much it has suffered so far.
Suffering is an arbitrarily complex figure arrived at by crediting the process for
how much it has had to wait, how many times it has been preempted, how much
its user is paying in premiums, and how urgent it is. The process is also debited
for such items as the amount of time it has actually used and the other resources
it has consumed (resources like space and access to secondary store). The pro-
cess with the greatest suffering is given the next quantum.

(3) The user buys a response ratio guarantee. A suffering function is used that takes
into account only the difference between the guaranteed response ratio and the
actual response ratio at the moment.

3 PERSPECTIVE

This chapter has looked in some detail at a few scheduling policies and has given brief
descriptions of others. Operating systems seldom use any of the policies we have shown
in a pure form. Short-term scheduling often merges with medium-term scheduling (in
periodic calculations of internal priorities, for example), and many operating systems use
ad hoc policies. These policies often have a number of tunable parameters that can be
adjusted at each installation to fit its specific workload. Some sophisticated schedulers
even adjust their own parameters occasionally as the current load changes. The proper
setting during the middle of the night may well be different from the setting during the
middle of the afternoon.

Perspective 47

3.1 Classification of scheduling policies

To put the large number of scheduling policies in perspective, we can develop a language
to characterize themost important scheduling policies. We first want to distinguish
preemptive from non-preemptive methods. In the first, typified by RR, service can be
interrupted by various external events. We have seen the clock interrupt as one example
of such an event. Other reasons for preempting the current process include new arrivals
in the ready queue and changes of priority within that queue. We will soon see methods
that use such reasons. Under non-preemptive methods, typified by FCFS, service is inter-
rupted only when the process enters a wait list or terminates.

Once it has been decided to start another process, the policy that selects the new
process makes a priority decision: The most urgent process should run next. Policies
differ in how they compute urgency. In both RR and FCFS, priority is based on the order
of arrival in the ready queue. More generally, priority information may be based on the
following properties.

� Intrinsic properties: characteristics that distinguish one process from another.
Intrinsic characteristics include service-time requirements, storage needs, resources
held, and the amount of transput required. This sort of information may be placed
in the context block. For example, the MVS operating system for the IBM 370
gives a longer quantum to processes holding certain resources. Tops-10 gives a
higher priority to processes using small amounts of main store, particularly if the
main store istied down, that is, prevented from being displaced by other
processes. (We discuss tying down in Chapter 3.)
These characteristics might be determined either before the process starts or while
it is running. They may even change while the process is running. For example, in
spooling and batch systems, service-time requirements may be explicitly declared
as part of the job description. For example, a user might indicate that this process
needs 45 seconds to complete. If it takes more, the operating system is justified in
terminating it. Even rough guesses can be useful to the operating system. Experi-
ence shows that less than 10 percent of processes actually exceed estimates. In
interactive multiprogramming, service time is usually not known (or even
estimated) before the process starts, but it may be estimated implicitly once the
process has been running. Storage needs either can be declared explicitly ahead of
time or can be deduced implicitly by the operating system. Storage needs may
change during the lifetime of a process. Likewise, the user may declare explicitly
which devices will be used, or the operating system can wait until the process starts
performing transput to record this property.

� Extrinsic properties: characteristics that have to do with the user who owns the
process. Extrinsic properties include the urgency of the process and how much the
user is willing to pay to purchase special treatment.

� Dynamic properties: the load that other processes are placing on resources.
Dynamic properties include the size of the ready list and the amount of main store
available.

We can arrange the policies we have examined according to whether they use
preemption and whether they use intrinsic information. This arrangement is shown in

48 Time Management Chapter 2

Figure 2.13.

3.2 Evaluating policies

Given a policy, how can we evaluateits performance? Threecommon approaches are
analysis, simulation, and experimentation.

Analysis involves a mathematical formulation of the policy and a derivation of its
behavior. Such a formulation is often described in the language ofqueueing networks,
which are pictures like the one shown in Figure 2.14. This picture shows a simplified
model of the transitions through which a process might pass. Lines indicate transitions,
rectangular objects represent queues, and circles represent servers. The model in this
figure shows a multiprocessor with two cpu’s that share a single queue. A process
(called a ‘‘customer’’ in the jargon of queueing theory) enters from the right and is
queued for execution. It can be served by either cpu after waiting in the cpu queue.
After the cpu burst, the process moves to one of the three transput-wait queues, depend-
ing on which one it needs.

To complete the model, one describes the probability of taking any branch (for
example, how likely it is for an average process to need disk, as opposed to printer, ser-
vice), and the queuing parameters for each service station. In particular, one needs to
know the arrival distribution for all the arrival arcs in the network, the service distribu-
tion for all servers (how long does it take to service a disk request?), and the scheduling
policy at each queue.

non preemptive

preemptive

RR

FB

SRR

FCFS

PSPN

SPN

HPRN

no instrinsic intrinsic

information information

Figure 2.13 Classification of scheduling policies

Perspective 49

CPU

disk

printer

tape

arrivaldeparture

Figure 2.14 A typical queueing network

Of course, such a model is only an approximation of the reality. It always ignores
some details (in our example, we ignore long-term scheduling) and is incapable of
describing other details (the service distributions at different stations may depend on the
class of the process). It is, however, a useful tool for performing analyses.

Mathematical methods can produce information about a queueing network, such as
the expected length of each queue, the expected response time from entry to exit, and the
percentage of time that each server is busy. These results can sometimes be found
exactly by mathematical manipulations. Little’s result, for example, says that the number
of processes in a queue is equal to the arrival rate times the average wait time for the
queue. Sometimes results can only be approximated by numerical methods. This is
especially true for distributions other than the exponential distribution, scheduling poli-
cies other than FCFS, and complex queuing networks.

Once a model has been built and results have been derived, the next step is to vali-
date the model by comparing its predictions against reality. This step is easy if the model
describes an actual situation. It is harder if it describes a hypothetical situation. For
example, before an installation decides to buy another tape drive, the managers might
undertake an analysis of the expected improvement in throughput with that drive. First a
model would be built of the current installation, and that model would be validated.
Then the model would be modified to include the new tape drive. The managers would
have to trust the validity of the new model in order to use its predictions.

There are cases where analysis is inadequate, such as when the models become so
complex that analytic methods fail or when queuing networks do not adequately describe
the situation. In these cases,simulation may be used. Simulation involves tracking a
large number of processes through a model (such as a queueing network) and collecting
statistics. Whenever a probabilistic choice must be made, such as when the next arrival
should occur or which branch a process takes, a pseudo-random number is generated
with the correct distribution. It is also possible to drive the simulation with traces of real
systems to match reality better. We saw the results of simulations in Figures 2.4 and 2.6,

50 Time Management Chapter 2

which tracked thousands of processes through a simple network with only one queue and
one server.

Simulations, just like analytic models, must be validated to ensure that they are
adequate descriptions of the situation that is being modeled. They are often run several
times in order to determine how much the particular pseudo-random numbers chosen
affect the results. Simulations tend to produce enormous amounts of data that must be
carefully distilled before they are useful. Simulations often use extremely detailed
models and therefore consume enormous amounts of computer time. For these reasons,
simulations are usually appropriate only if analysis fails.

If simulation doesn’t work, usually due to the complexity of the model, experimen-
tation is the last resort. Experimentation often requires a significant investment in equip-
ment, both to build the system to be tested and to instrument it to acquire the required
statistics. It can be far cheaper to simulate the SPN scheduling method, for example,
than to implement it properly, debug it, impose it on a user community for a while, and
measure the results. Likewise, it is cheaper to simulate the effect of installing a new disk
than to rent it, connect it, see how well it works, and then disconnect it after the managers
decide that the improvement is not cost-effective. However, experimentation is sure to
give accurate results, since by definition it uses an accurate model.

3.3 Scheduling levels

We have been concentrating on short-term scheduling. Some of our short-term methods,
however, contain aspects of medium-term scheduling. Any method that calculates priori-
ties at a slower rate than it schedules processes (SRR is one example) is applying a form
of medium-term scheduling. These priorities may influence short-term decisions without
causing processes to depart from the short-term scheduler’s view. Tuning the parameters
of a short-term method is another form of medium-term scheduling. For example, we
may adjust theb / a ratio in SRR in order to keep the size of the accepted group right, or
we may modify the quantum of RR as the load changes.

Similarly, the realm of medium-term scheduling is not sharply demarcated. Dif-
ferent reasons for waiting may lead to very different blocking times. Processes in the
new list under SRR do not stay there very long. Processes waiting for transput usually
wait less than a second. Processes waiting for main store generally wait between 1 and
10 seconds. Processes waiting for other processes (as discussed in Chapter 9) or for seri-
ally reusable resources (as discussed in Chapter 4) may wait for minutes or hours.

Long-term scheduling also blends into medium-term scheduling somewhat. The
decision not to allow a process to start may be based on explicitly declared resource
needs that are not currently available, in which case we might say that the process has
really started (as far as the long-term scheduler is concerned) but is still waiting for
resources (as far as the medium-term scheduler is concerned). The decision may be
based on the process class and the time of day; evening-class processes (as declared by
their users) are not started during the afternoon.

Perspective 51

3.4 Countermeasures

A user who knows what policies a particular operating system uses can sometimes use
that knowledge to achieve an unfairly high level of service. For example, some operating
systems allow a user to have many processes at the same time. A user can circumvent
the scheduler’s attempts at fairness by building many processes, each of which is treated
as an independent and equal contender for the computation resource. One common form
of this trick in the Unix operating system is to create a ‘‘background’’ process that exe-
cutes some time-consuming operation, like a compilation, while the user interacts with a
text editor to prepare some other program. (We discuss this idea in more detail in
Chapter 9.)

A scheduler can institute a policy that lumps together all processes that belong to
the same user, giving each one less time in proportion to how many belonging to that
user are in the ready list at the same time. The processes in wait lists do not contribute to
the load, so they may be ignored for this purpose. The Utah Tenex scheduler makes use
of a fancy version of this algorithm that includes a suffering function.

If the scheduler follows a policy that favors short processes, the user can program
processes to do only a small bit of computation before artificially pausing for a very short
time. For example, the process can periodically write a single character to the terminal.
When the process returns from the wait list, it is treated by the short-term scheduler as a
new arrival. New arrivals are assumed to be short. On some interactive operating sys-
tems, the user can benefit by repeatedly interrupting the process by using a keyboard
‘‘interrupt’’ key, then allowing the process to continue. To prevent such abuse requires
that the scheduler treat processes returning from interrupt wait or transput wait in the
same way as it would if they had continued computing. Such special treatment can be
cumbersome to implement.

A similar situation arises under PSPN. Instead of submitting a long process, one
can break its work into many small pieces. Each piece will have a very high priority,
since it takes almost no time. The total missed time will then be very short, although the
startup and termination expense for all the processes may be large.

Some schedulers, such as the one for CTSS (the Compatible Time Sharing System,
an early interactive operating system at MIT), give poorer service to processes that
require a large amount of main store. When such schedulers are used, programmers tend
to concentrate their data and instructions, leading to less easily maintained and more
bug-prone programs.

3.5 Guiding principles

How is one supposed to sift through our list of policies to pick the one that is best in a
particular case? Here is a rule of thumb: Preemption is worth the extra switching cost.
Since context must switch at every interrupt from the running process back to the kernel,
it does not usually cost much extra for the kernel to make a decision and allow a different
process to run. Clock devices are almost universal these days, from mainframe comput-
ers down to board-level microcomputers.

52 Time Management Chapter 2

The quantum size should be large enough so that kernel time does not become
excessive. A process switch might cost about 100 microseconds, and other scheduling
bookkeeping might occupy another 400 microseconds. If the quantum is 10 mil-
liseconds, scheduling occupies about 5 percent of the time, which is a reasonable figure.

Some policies are more expensive than others to implement. FCFS only requires a
queue for the ready list. FB requires a number of queues. WSN can require arbitrarily
complex computation at every decision point. The implementer should try to balance the
cost of making the decisions against the advantage that a particular strategy might yield.
The complexity of the program itself is also worth minimizing. Simple programs are
more likely to be correct and are certainly easier to maintain.

Many operating systems use a hybrid policy, with RR for short processes and some
other method, possibly RR with a longer quantum and a lower priority, for longer ones.
Space management, which we will discuss in the next chapter, affects scheduling.
Processes that need a substantial amount of store are often given larger quanta so that
they can get more work done while they are occupying main store.

The recent introduction of personal computing casts a different light on time
management. It is not essential to keep the computer busy 100 percent of the time, even
if there is work available. It is more important to provide interactive processes with good
service. For example, when an interactive process waits for transput, it might not be
appropriate to switch to another process immediately. Instead, the scheduler might wait
for a while, letting the computer sit idle, in the hope that the interactive process will soon
become runnable again and will not need to suffer a process switch before it can start.
Similarly, an interactive process that enters a computationally intensive phase might still
be considered interactive, and the scheduler might favor it instead of treating it as the
equal of a background computational process. If all processes belong to the same user,
the operating system does not have to live up to quite the same goal of fairness among
processes.

4 FURTHER READING

The material covered in this chapter can be treated in a much more formal fashion. If
you are interested in scheduling methods or in the extended area of performance model-
ing, analysis, and measurement, you may want to look at texts by Sauer and Chandy
(1981), Lazowska and colleagues (1984), and Kleinrock (1976). Little’s result can be
found in a journal article (1961). A set of articles by Denning and Stone (1980) discusses
how personal computers influence the way we look at scheduling and other aspects of
operating systems. Shneiderman’s review article on human-computer interaction (1984)
comes to the conclusion that users prefer a response time of shorter than a second for
most tasks and that error rates increase as the response time becomes too long. The arti-
cle by Coffman and Kleinrock (1968) describes countermeasures to scheduling methods.
CTSS, an early operating system that penalized large jobs and used a variant of FB, is
described by Corbato and colleagues (1962). The Utah Tenex scheduler is described in
the article by Ellison (1975).

Further reading 53

5 EXERCISES

1. What does the scheduler do under RR when there is only one process that can run?

2. What does the scheduler do under RR when there are no processes that can run?

3. Of all the policies discussed in the chapter, which requires the least amount of
overhead time, that is, time needed to compute the policy?

4. Which of the policies would you prefer ifρ = 2?

5. The expected amount of time needed by a process is always 1/β under the
exponential distribution. Is a process therefore expected never to terminate?

6. Consider the following process arrival list:

����������������������������������

Name Arrival time Service time����������������������������������

A 0 3
B 2 6
C 3 10
D 7 1
E 8 5
F 15 2
G 25 7�����������������������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 2.15 depicts this situation graphically.

8

3

0 5 10 15 20

A

B

C

D

E

25 30

F G
0 15 25

2

3

7 8

8

13

13

17 32

Figure 2.15 Process arrival list

Complete the figure, showing which process is executing over time, and calculate
T , M , andP for each process, under the following policies: FCFS, SPN, PSPN,
HPRN, RR with q = 1, RR with q = 5, and SRR withb / a = 0.5 andq = 1.
Assume that if events are scheduled to happen at exactly the same time, new
arrivals precede terminations, which precede quantum expirations.

54 Time Management Chapter 2

7. Here are some procedures that give you exponentially distributed random numbers:
function Random(var Seed : integer) : real;
{ Linear-congruential random number generator, for
32-bit computers. Start the Seed anywhere you like,
but then don’t touch it. Returns a pseudo-random
number between 0 and 1. }
const

Multiplier = 1103515245;
Adder = 12345;
Modulus = 2147483648; { 2 ** 31 }

begin
Seed := (Seed * Multiplier + Adder) mod Modulus;
Random := Seed / Modulus;

end Random;

function Expo(Lambda: real; var Seed : integer) : real;
{ Returns a random number distributed according to
the exponential distribution with parameter Lambda.
Seed should be set once and then not touched. }
begin

Expo:= -ln(Random(Seed)) / Lambda;
end Expo;

Write a program to generate 1000 samples from Expo(3) and draw a histogram (a
bar graph) showing how many samples fall in each interval of length 0.1 from 1 to
10. For example, how many samples were in the half-open interval (2.3, 2.4]?

8. Write a program that generatesn processes, with arrival intervals drawn from an
exponential distribution with parameterα and service requirements drawn from an
exponential distribution with parameterβ. The program then schedules these
processes according to either FCFS or SPN and computesT , M , P , andR for each
process. Run your program withn = 100 andρ = 0.5, 0.9, 1.5.

9. Using a similar program, show the length of the ready list for FCFS and how it
changes over time whenρ = 0.5, 0.9, and 1.5. Can you predict the average length
just knowingρ?

10. Devise a data structure that allows SRR to be implemented efficiently. In particu-
lar, how do we organize the new list, and how do we store the current priorities?

11. Predict the behavior of the LCFS (last come, first served) non-preemptive policy.
Simulate this policy with a program, and compare the results to your prediction.

12. Repeat the previous exercise with a preemptive LCFS policy.

13. Consider a preemptive HPRN policy. Can it be implemented exactly? If not, how
would you approximate it?

14. What countermeasures can an inherently short process take to get better service if
the scheduling method favors long processes?

15. Which of the methods discussed in this chapter have a scheduling cost that is
independent of the number of processes in the ready list?

16. Some operating systems are used in environments where processes must get
guaranteed service.Deadline scheduling means that each process specifies how
much service time it needs and by what real time it must be finished. Design a
preemptive algorithm that services such processes. There will be occasions when
deadlines cannot be met; try to discover these situations as early as possible (before

Exercises 55

starting a process at all if it cannot be finished in time).

56 Time Management Chapter 2

chapter 3

SPACE MANAGEMENT

The management of both time and main store is motivated by the fact that processes gen-
erally are designed to pretend that other processes don’t exist. It shouldn’t make any
difference toA whether or notB is also in the ready list.B’s actions should not have
visible repercussions onA’s store. Processes also ignore details about the machine, such
as how much main store there really is and where the kernel is in main store. Both of
these features are consonant with the Beautification Principle, which makes the operating
system responsible for keeping ugly details out of view.

However, multiprogramming works best when several processes are kept in main
store at the same time, because process switching among them requires less work if data
need not be transferred between main and backing store. The fact that several processes
share main store requires that the operating system allocate the main store resource effec-
tively, in accord with the Resource Principle. In particular, the operating system must
protect processes from each other, keep track of the current allocation state of main store,
and arrange with the hardware for efficient execution.

1 PRELIMINARIES

1.1 Swapping

The operating system must arrange main store in such a way that processes can remain
ignorant of each other (following the Beautification Principle) and still share main store.

57

Processes that are blocked for a long time in wait lists should be removed from main
store temporarily to make room for ready processes. We say these processes have been
swapped out and later will beswapped in again. While a process is swapped out, it
resides inbacking store, which is usually a disk or a drum. We sometimes refer to the
location in backing store used for swapping asswapping space. The context block of a
swapped-out process should indicate where it has been placed in backing store. The con-
text block itself is usually not swapped out.

Swapping should follow theCache Principle of operating systems, a principle that
we will encounter several times in this book.

���

Cache Principle���

The more frequently data are accessed, the faster the access should be.��
�
�
�

�
�
�
�

A cache is a repository for data from which they can be accessed quickly. We will use
the termarchive to refer to the slower storage in which the data may also be stored.
Copying the data from the cache to the archive is calledarchiving, and copying data
from the archive to the cache is calledcaching. If data are both in the cache and in an
archive, the cache holds the more accurate version. The Cache Principle says that the
most frequently accessed data should be kept in the cache.

In our case, main store is a cache, and backing store is its archive. Swapping a
process out is equivalent to archiving it; swapping it back in is like caching it. The space
occupied by ready processes is accessed more often than that occupied by blocked
processes. Therefore, blocked processes may be swapped out to make room for active
processes.

Violating the Cache Principle can lead to unfortunate results. In most situations
involving caches, data must be cached from the archive before they can be used. If the
frequency at which data are accessed is misjudged, the data may be repeatedly cached
and archived. If this situation persists, a situation calledthrashing results. When the
operating system is thrashing, moving data between two levels of storage becomes the
dominant activity of the machine. Thrashing due to continual swapping was a severe
problem with early attempts at storage management.

1.2 Storage hierarchies

Storage organizations often use more than two levels. Each level can be considered an
archive for the cache that sits above it. For example, Figure 3.1 shows a four-level
storage organization. Imagine a program that is saved on a long-term magnetic tape. It
may take about 50 seconds to read that tape onto the disk. (This operation of caching
from tape to disk is sometimes called ‘‘staging’’.) It may then take about 50 milliseconds
to read a particular block of the disk into main store. Before any given instruction is exe-
cuted, the hardware loads it into a cache for fast access.

Data stored on the disk are generally stored on tape as well, except for recently
modified data, which will eventually be archived to tape. Similarly, data in main store

58 Space Management Chapter 3

Access time: 50 s

Access time: 500 ns

Access time: 50 ns

main store

backing store: disk

long-term store: magnetic tape

Access time: 50 ms

Size: 10 bytes

Size: 106 bytes

Size: 109 bytes

Size: 1012 bytes

hardware cache

cache

archive

Figure 3.1 Four levels of storage

are generally also on disk, and data in the hardware cache are in main store. Each level
therefore acts as an archive for the level above it.

Data that are currently accessed most frequently should be in the higher levels of
the storage hierarchy. If we need to cache an item from an archive, access is
significantly slower. We call such a situation acache miss. In contrast, acache hit is
when we find the data we need in a cache and need not turn to the associated archive.

The effective size of store is the size of our tape library, shown in the figure as 1012

bytes. The effective access time depends on the percentage of accesses that result in
cache hits at each level. For the sake of calculation, let’s assume that thehit ratio is 95
percent for all the levels in our picture. The effective access time is then

0.95.(50 ns)+ 0.05.0.95.(500 ns)+ 0.05.[0.95.(50 ms)+0.05.(50 s)]= 6.4 ms

As the hit ratio increases, the effective access time decreases. With a hit ratio of 99 per-
cent at all levels, the effective access time becomes 55 microseconds.

The Hysteresis Principle applies to caching in the following way. Once data have
been brought into a cache, which incurs some transfer expense, they should be left there
at least long enough to pay back that expense. We will encounter several examples of
this application of the Hysteresis Principle in this chapter.

1.3 Physical and virtual store

We will repeatedly distinguish between physical and virtual store.Physical store is the
hardware memory on the machine. Physical store usually starts at physical address zero
and continues to some large physical address. Microcomputers might have as few as 4K
or 8K bytes of main store; large mainframe computers often have 16M bytes. (Abyte is

Preliminaries 59

8 bits. We useK for kilo to mean 210 = 1024,M for mega to mean 220 = 1,048,576, and
G for giga to mean 230 = 1,073,741,824.) The Cray-2 computer has 2G bytes of main
store. Addresses can be described as binary numbers but are often represented by either
base-8 (octal), base-10 (decimal), or base-16 (hexadecimal) numbers for convenience.

Certain locations in physical store may be reserved by the hardware for special
purposes. For example, the DEC PDP-11 reserves the first 1K bytes for tables that direct
the hardware when a device interrupts. The kernel often resides in ‘‘low core,’’ which
means physical store at low addresses. (‘‘Core’’ is an old word for main store that
derives from magnetic-core technology.) The rest of physical store may be partitioned
into pieces for the processes in the ready list.

Each process has its ownvirtual store, which is the memory perceived by the pro-
cess. We will often refer to all the virtual store of a process as itsvirtual space. As far
as the process is concerned, there is nophysical store. All addressreferences referto vir-
tual space. In the simplest case, virtual store looks like a contiguous chunk, starting at
virtual address zero and continuing to some maximum address. The largest virtual store
possible is usually limited by the architecture of the machine, in particular, by the number
of bits that make up an address. If there aren bits in an address, the largest address is
2n . For example, the DEC PDP-10 has 18 bits of address, so the largest address is 256K.
The DEC PDP-11 has only 16 bits of address; the largest address is thus only 64K.
Therefore, the virtual space on the PDP-11 has one-fourth the addresses of the PDP-10.
An address on the PDP-11 refers to an 8-bit byte, whereas an address on the PDP-10
refers to a 36-bit word; therefore, the PDP-11 actually allows only one eighteenth as
large a virtual space as the PDP-10.

Although the virtual space is limited by the number of bits in an address, it is usu-
ally not limited by the amount of physical store on the machine. Virtual-space size and
physical-space size are independent.

� Virtual space can be larger than physical space, especially if paging is used. We
will discuss paging later in this chapter.

� Some machines can have far more physical store than can be addressed. Some
models of DEC PDP-11, for example, can take 1,044,480 bytes of main store, but
individual virtual spaces are still limited to 65,536 bytes.

Ordinarily a process may access any portion of its virtual store. When the process
starts, instructions will fill part of virtual store. Besides the instructions area, the process
may keep a data area and a stack area. (Stacks are used for implementing procedure
calls; their details need not concern us here.) In more complicated cases, the operating
system may divide virtual store into regions calledsegments, each of which has its own
set of addresses calledoffsets, starting with zero and reaching some maximum for each
segment. When a process wishes to access a location in main store, it must name both
the segment and the offset within the segment.

1.4 Address translation

60 Space Management Chapter 3

Processes deal with virtual addresses and ignore physical ones. However, every access a
process makes must then undergoaddress translation to convert the virtual address to
the associated physical address. Address translation is shown in Figure 3.2, which dep-
icts the kernel and two processes each residing in the same physical main store. Process
A is 13K in size,B is 10K, and the kernel is 19K. (Kernels range in size from about 5K
to over 300K.) The size of a process is not usually an integer number of K, but we will
use such sizes forA andB for simplicity. We will fill in details of this picture for the dif-
ferent storage management strategies that we will encounter.

Every time a program (whether a process or the kernel) executes an instruction, it
generates one or morereferences toaddresses in virtual store: one to access the instruc-
tion, a second to access the first operand, a third to access the second operand, and a
fourth to deposit the result of the operation. (On some machines, like the Control Data
Cyber 205, one instruction can manipulate a large array of data, generating hundreds of
thousands of data accesses.) Since everyreference mustbe translated, translation must
be fast. This requirement means that we cannot afford to perform address translation in
software. Instead, we require the hardware to perform most address translation for us.
This result comes from a variation on the Cache Principle:

��

Cache Principle (restated)��

Operations that must be performed often should be performed rapidly.���
�
�
�

�
�
�
�

The operating system designer must work within the constraints imposed by the
hardware. If the hardware usestranslation tables to guide address translation, the
operating system must construct those tables and make sure they hold correct informa-
tion. The most active parts of these tables are often copied by the hardware into a cache

address translation

address translation

kernel

process Bprocess A

19K

10K13K 00

0

64K0

physical main store

Figure 3.2 The space management problem

Preliminaries 61

called atranslation look-aside buffer.
Some operating systems are designed so that the kernel uses physical store directly

by turning off address translation. Most, however, give the kernel its own virtual store,
calledkernel space, which contains the instructions and data of the kernel. Kernel space
might overlap the virtual store of a process to allow the kernel to transfer data easily
between itself and the process. Since the kernel uses virtual, not physical, store, an
address-translation table must exist for the kernel, too. Many machines allow several
address-translation tables to be set up at the same time. The hardware picks the one to
use on the basis of the current processor state (privileged, non-privileged, or perhaps
some intermediate). Switching contexts between process and kernel is then fairly fast.
The hardware just starts using another address-translation table.

However, placing a new process in the running state can be slow, since the kernel
must change the process address-translation table to correspond to the virtual space of the
new process. The translation table for each process is stored in the context block for that
process. It is usually not part of the state vector, which means that the kernel may even
swap it out. On some machines, the operating system need not copy the translation table
from the context block into a fixed physical location reserved for process state tables;
instead, only a pointer to the table in the context block needs to be placed in a reserved
location.

Hardwareregisters make up a region of particularly fast store that acts as a cache
for main store. Registers are also part of the virtual space of a process. When context
switches from a process to the kernel, the kernel must save the contents of all registers in
the context block of the process so that they can be restored when context switches back.
Many machines provide a separate set of registers for each processor state, a feature that
reduces the context-switch cost but not the process-switch cost.

1.5 Sharing

It is sometimes useful for two processes to share parts of their virtual space. For exam-
ple, all the processes simultaneously running the same program (a compiler, for example)
might profitably share instructions to reduce their overall space requirements. In the
early days of sharing, instructions had to be specially constructed in order to be ‘‘re-
entrant’’ or shareable. The most important rule is never to modify instructions. In addi-
tion, return addresses must not be saved in the instructions area. Now that most pro-
grams are written in higher-level languages that use a central stack for return addresses
and local variables, no extra effort is required to guarantee re-entrancy. Writeable data
areas, however, must be distinct for different processes running the same program simul-
taneously. In particular, the register contents, including the program counter, must be
maintained separately for each process sharing the same instructions.

Occasionally, very large programs might be split into several processes that com-
municate by sharing a part of their virtual store. Special synchronization techniques are
needed to maintain consistency in such situations. We will discuss these techniques in
Chapter 8. In general, only space management techniques that divide virtual space into
several segments lend themselves to sharing.

62 Space Management Chapter 3

1.6 Initial loading and execution

When a process starts, its virtual space is initialized by the storage manager. The storage
manager can figure out what to put in the virtual space of a process in two ways: by
copying the virtual space of another process, which we will callsplitting, or by reading a
file that describes the initial virtual space, which we will callloading. We describe these
methods in more detail in Chapter 9. Splitting might copy the entire virtual space or, if
sharing is possible, might allow parts of the virtual space to be shared. The exact mean-
ing is part of the design of the particular operating system. The Dynix operating system
for the Sequent Balance multicomputer, for example, distinguishes between private and
shared data regions in virtual store. A new copy is created for the private region, but not
for the shared region.

The file used for loading is called aload image. It contains the instructions and
initialized data of the program and may also indicate how much space is needed for unin-
itialized data. It also tells where the program starts, that is, the initial value for the pro-
gram counter. This information must be packaged in a form understood by the storage
manager. A load image is prepared by a program called alinker, which combines the
output of one or more compilation steps and searches libraries if necessary to find miss-
ing routines the compiled program needs. Bringing the load image from a file into main
store to start execution is performed by theloader, which is either a separate program or
part of the storage manager.

The format of a link module is designed at the same time as the operating system.
It generally includes the following information.

� A header that indicates that the file is a link module. Different kinds of link
modules can have different headers. For example, the header can indicate that
some debugging sections are missing.

� A list of sizes for the various parts of the module. This entry lets the storage
manager decide how much room to allocate.

� The starting address. The load-image format for Tops-10 also includes both a res-
tart address and a debugger start address.

� The machine instructions that constitute the program.
� Data areas initialized with their first values.
� Size indications for uninitialized data regions. The loader can clear these regions

to prevent the new process from discovering secrets in the space vacated by the
previous user of main store.

� Relocation information that allows the loader to adjust instructions and data to
work at the locations where they will be placed. Some operating systems avoid
this section by using appropriate virtual store techniques, described later in this
chapter.

� A symbol table to be used during interactive debugging. It associates locations in
the data and instruction regions with labels.

� A cross-reference table tobe used during interactive debugging. This table associ-
ates locations in the instruction region with lines in source files.

Preliminaries 63

Whether the new process is split or loaded, it usually comes into being as a result
of a service call submitted by another process. We will often call that instigator the
parent and the new process thechild. Service calls, as seen earlier, are like procedure
invocations as far as the calling process is concerned. We will describe service calls by
procedure headings and will set them off from the rest of the text with a square symbol
(�). The kernel might provide two calls of interest here:

� Load(file name). This call tells the operating system to take the load image stored
in the named file and make it a new process.

� Split. This call creates a new process whose virtual space is identical to the virtual
space of the caller. The program counter of the child is set to the same value as the
program counter of the parent.

The storage manager must allocate backing store for either Split or Load. The load
image itself can act as backing store for the parts of the virtual space that are not
modifiable, such as instructions and read-only data. In this way, processes that are
formed by the Split call can share some backing store with their parents. Fresh backing
store must be allocated for all the non-shared, writable parts of the new virtual space,
although this allocation may be delayed until the process actually modifies the contents
of its virtual store. (We discuss this technique, calledcopy on write, when we deal with
segmentation.)

At the minimum, each service call must report back to the caller whether the
request was honored. If not, it is sometimes useful to the caller to have some idea of
what did not work. The error ‘‘NoRoom,’’ which might apply to either Load or Split,
might be caused by one of a host of problems.

� Swap space is full on backing store.
� There are no available context blocks for the new process.
� The caller has the maximum number of children already.
� The caller’s user has the maximum number of processes already.

Once a process is running, it may need to acquire more virtual store. New store has
several uses.

� To hold data structures whose size could not be determined until the program
started to run

� To hold messages that will be sent to other processes (we discuss messages in
Chapter 9)

� To serve as buffers for transput (we discuss transput buffers in Chapter 5)
� To hold local variables and return addresses for procedure calls

Later, a process may release this new space.
Different storage-allocation schemes support such dynamic changes to differing

extents. A simple set of service calls might look like this:

� GetStore(descriptor). This call returns the virtual address of the start of the addi-
tional space. The space is specified by the descriptor, which indicates the how
much space the process needs. This call may require the storage manager to allo-
cate new backing store. The error ‘‘NoRoom’’ could apply to GetStore just as it

64 Space Management Chapter 3

does to Load.
� ReleaseStore(descriptor). This call deallocates space. The descriptor must indi-

cate both where the space starts and how long it is. It may be impossible to release
space that is not at the end of virtual store. After this call, accesses to the released
space are treated as errors.

� Terminate(exit code). This call causes the process to terminate, releasing all its
virtual space. The storage manager may reclaim backing store for all parts of the
space that are not being shared. Other resource managers may also reclaim
resources from the terminating process. The exit code is used to communicate
status back to the parent of the process, which might be waiting for this child to
complete.

The rest of this chapter is organized according to the type of address translation the
hardware supports. This organization will provide some feeling for the history of space
management because the simpler methods that we will start with were developed first.
These early methods are important not only from a historical perspective but also because
they serve to develop some of the ideas that will appear in even the most sophisticated
hardware. The part of the kernel this chapter discusses is called thestorage manager
because it makes policy decisions with regard to space.

2 FIXED PARTITIONS

All forms of space management require hardware support. Thefixed-partition method
was standard in OS/360, where it is called MFT (for ‘‘multiprogramming with a fixed
number of tasks’’ or MVT for ‘‘multiprogramming with a variable number of tasks.’’
This operating system was designed for early IBM 360 models, which provided the
necessary hardware. All physical store is divided by the operating system into a set of
contiguous regions calledpartitions. Only one process can be executed at a time in each
partition, and the virtual space of each process is just the single partition in which it exe-
cutes.

Figure 3.3 shows processesA and B placed in partitions. The first partition, of
length 20K, is reserved for the kernel. The next partition starts at location 20K and is
16K long. ProcessA fits there with 3K wasted at the end. ProcessB is in the next parti-
tion, which starts at 36K and is also 16K long. It wastes 6K of this partition. The last
partition starts at 52K and is 12K long; it is currently unoccupied.

Under the partition method, virtual addresses are identical to the physical
addresses. Address translation is therefore easy; there is no need for a translation table.
However, the process must know where in physical store it has been placed because it
must know how to address its own data and instructions. We say that it must bebound
to its virtual addresses, that is, its virtualreferences must beturned into physical refer-
ences. Binding is performed in two ways. Atloading time, when the process is brought
into main store for the first time, all virtual addresses are bound to physical addresses by
the position where the process is placed in physical store. Atexecution time, when the
program is running, it can execute an instruction that places the current value of the

Fixed partitions 65

46K36K33K20K

process Bprocess Akernel

kernel

process Bprocess A

19K0

64K0

physical main store

20 36 52

Figure 3.3 Partition method

program counter in a register, from which it can derive the virtual position of the rest of
the program. This technique is known as ‘‘establishing addressability.’’ It is usually per-
formed once at the start of execution. After that time, all address binding is fixed.

Under MFT, partition boundaries are established independently of individual
processes. They may be changed through manual intervention by the operator. For
example, some installations provide many partitions of various sizes during the day but
provide only a few very large ones at night. Processes that need a very large partition are
blocked (by the long-term scheduler) until an adequately large partition is created. Under
MVT, the operating system automatically changes the number and size of partitions in
response to the requirements of new jobs.

As our example shows, some spare room often appears at the end of a partition.
We call such spare roominternal waste because it is space inside the virtual store that is
not used. However, the process might use some of the spare room for dynamically grow-
ing data structures. For example, compilers build tables that may grow very large. Some
programs can be compiled in smaller partitions, whereas others will need larger parti-
tions. Once it has begun to run within a partition, a program can never expand beyond
the limits of that single partition.

A process is either entirely in main store or entirely in backing store. There is no
point swapping out part of a process, because the entire partition must be freed before it
is safe to place another process in it. Many implementations do not swap a process out at
all but allow it to execute until completion. If a process is swapped out, it must later be
swapped back into the same partition that it was in before, because it has already been
bound there. The process is unable to re-establish addressability because it does not real-
ize it has been swapped out. In addition, it may have stored virtual addresses of impor-
tant objects like data items or procedures within registers or data structures. It would be
cumbersome to find all the places in which addresses have been stored in order to rebind
them.

66 Space Management Chapter 3

2.1 Security

The partition method cannot build virtual spaces that are larger than physical store; it can
only provide smaller virtual spaces. However, a process can easily generate an address
that is outside the virtual space. This ability could lead to chaos if it were allowed to go
unchecked. Malicious users could write programs that modify any partition, including
the areas where the kernel resides. Programs could steal sensitive information from the
virtual store of other programs. Program errors could result in the execution of instruc-
tions (and data!) in another partition and cause wild modifications of data anywhere in
physical store.

To prevent such chaos, the storage manager of the operating system must invoke a
security mechanism, preferably with the assistance of the hardware. One classical parti-
tion method provides security through a scheme ofstorage keys. Physical store is
divided into chunks of identical length, typically about 4K bytes. Partitions are always
organized as an integral number of chunks. We say that partitions arealigned on chunk
boundaries; that is, they always start at the beginning of a chunk.

The storage manager assigns alock (perhaps 16 bits long) to each chunk. Each
chunk in a partition has the same lock, and each partition has a different lock. If a pro-
cess does not need all the physical space of a partition, unused chunks can be given a dif-
ferent lock.

The storage manager assigns akey to each process. The key is stored in the con-
text block. When the kernel switches context to a process, it makes sure that the key is
placed in the hardware processor-state register, along with an indication that the process
is not privileged.

Every access performed by any process is checked by the hardware to make sure
that the current key fits the lock in the chunkin which thereferencefalls. If the key does
not fit, the hardware generates atrap, which switches context back to the kernel. The
kernel then invokes some policy, usually to terminate the offending process. It may also
produce diagnostic information to help the programmer recognize and correct the error.

The hardware might keep information about the locks in aphysical-store descrip-
tor table. Modifying this table is a privileged operation. The physical-store descriptor
table has one entry for each chunk. Let’s assume that an address hasb bits and that each
addressreferences an 8-bitbyte. If we make a chunk 2c bytes long, the most significant
b −c bits of each address specify the chunk in which the address falls. The following
declarations describe the physical-store descriptor table. The mathematical constantsb
and c have been expanded into the mnemonic identifiers ‘‘BitsPerAddress’’ and
‘‘BitsPerChunkAddress.’’

1 const
2 BitsPerAddress = 16; { for example }
3 BitsPerChunkAddress = 6; { for example }

4 NumberOfChunks = 2BitsPerAddress-BitsPerChunkAddress;
5 type
6 Lock = integer;
7 ChunkData = Lock;
8 var
9 PhysicalStoreDescriptorTable =
10 array 0 : NumberOfChunks - 1 of ChunkData;

If we use the suggested constants, an address has 16 bits, meaning there are 216 or 64K

Fixed partitions 67

bytes in physical store. The largest virtual store is also 64K bytes. If 6 bits specify the
chunk, each set of 1024 bytes has its own lock, and the length of each partition must be a
multiple of 1024 bytes. There are 64 chunks in all. Figure 3.4 shows how the hardware
checks addresses.

Each access must be checked, whether it is for an instruction fetch or a data fetch
or store. Security introduces a slight amount of extra work on each access, but not as
much as address translation requires. This work can often be overlapped with the main
store access, which can be cancelled if it turns out that the security check fails. Such
overlap is crucial to making fast computers.

The kernel also has a key, and the hardware checks all its accesses, too. However,
the kernel usually uses a special ‘‘master key,’’ which opens all the locks. Most attempts
to subvert the security on operating systems for the IBM 360 (many of them successful)
have had the master key as their goal. Once a process is running with the master key, it
can do anything.

The simple partition method described here does not provide the ability to share
parts of virtual store among processes. Either the processes have the same key, in which
case they share entirely, or they have different keys and cannot share at all. However,
each process can be given a number of keys, and finer-grained sharing is therefore possi-
ble. The logical extension of this idea is calledcapabilities, an important concept dis-
cussed in Chapter 6.

physical-store

no

yeslock

keychunk offset

trap

ok

address

descriptor table

Figure 3.4 Hardware address checking

68 Space Management Chapter 3

2.2 Overlays

If a process is restricted to a partition that is too small, theoverlay software technique
can help it, although the operating system won’t provide much assistance. Figure 3.5
shows processA trying to cram into a small partition that starts at 20K and runs for 8K.
The first 8K ofA are placed at locations 20K to 28K; the last 5K are placed at 23K to
28K, overlapping some of the first part.

This cramming is a private affair of processA, which has created a new level of
address translation by using the same region of virtual store for different purposes at dif-
ferent times. We will call this new level of virtualization the ‘‘pseudo-store.’’A’s virtual
store has length of only 8K, but its pseudo-store has length 13K.

The process divides its pseudo-store into regions calledoverlays. Each overlay
can fit into virtual space by itself. In fact, several overlays may be able to fit at the same
time into virtual space. The process assigns each overlay a fixed place in virtual store.
This region may overlap with the region given to some other overlay. At any given time
during execution, some overlays are present and others are in backing store. The ones
that are present do not overlap.

Whenever an access is made to an area in pseudo-store, either the overlay it needs
is currently in virtual store, in which case the access is performed easily, or it is not. In
the latter case, the process undertakes the necessary transput to remove the overlay or
overlays that occupy the place where the desired one needs to reside and then to bring the
required overlay into that position.

The hardware does not support overlays.Checking everyreference wouldbe
unacceptably slow in software. Therefore, only procedure calls are allowed to require
new overlays. Procedure invocation and return are therefore more expensive than they

52362820

46K36K33K20K

process Bkernel

kernel

process Bprocess A

19K0

64K0

physical main store

proc A

Figure 3.5 Overlays with partitions

Fixed partitions 69

would be otherwise, because not only must the status of the destination overlay be exam-
ined, but it may also have to be brought into virtual store.

One could place every procedure in its own overlay. Instead, the programmer
might specify the overlay structure in order to keep the number of cross-overlay calls to a
minimum and to make sure that overlays that do call each other can be placed simultane-
ously in virtual store.

Compilers can be of great assistance, too. Algol-like languages are especially
suited to overlays because the hierarchical nature of name scopes means that during exe-
cution of any one procedure, only variables local to that procedure or to enclosing pro-
cedures can be accessed. Therefore, each procedure can be given an overlay that starts in
virtual store right after all the overlays for its enclosing procedures. They will all be in
store at the same time, but other procedures at the same level will be absent.

Unfortunately, overlays will often be swapped out when room is still available in
virtual store, because some other overlay that must reside at the same location has been
accessed. Overlays work well only in applications where the execution of the program
goes through well-defined phases, each of which requires different program units.
Thrashing can result from the inappropriate use of overlays.

3 SINGLE SEGMENT

The DEC PDP-10 and CDC 6600 computers generalize fixed partitions by allowing their
boundaries to move dynamically. We will call each region asegment. Figure 3.6 shows
processesA andB each using a segment of main store.A’s segment starts at 20K and
runs exactly 13K, the length ofA’s virtual space.B’s segment starts at 42K and runs
exactly 10K, which is whatB needs.

As with the partition method, each process has a virtual space of exactly one seg-
ment. Unlike the partition method, virtual addresses within the segment begin at zero
and continue to some maximum. The hardware must therefore translate each access.
The size of the segment is determined by the storage manager of the operating system;
programs that require more space are given longer segments.

3.1 Mechanism

Instead of forcing boundaries to lie on chunk boundaries, a region can start anywhere.
This flexibility means that storage keys are no longer a reasonable protection mechanism
because each word in physical store would need its own lock. The fact that virtual
addresses are different from physical addresses provides a more reasonable implementa-
tion for protection. Instead of examining each physical (that is, translated) address to see
if it is legal by consulting a physical-store descriptor table, the hardware can examine
each virtual address by consulting avirtual-store descriptor table. Legal virtual
addresses must lie between zero and the largest address in virtual space.

70 Space Management Chapter 3

4220

physical main store

0 64K

0

0 013K 10K

19K

process A process B

kernel

Figure 3.6 Single-segment method

The hardware requires two pieces of information about the segment for the current
process: where it starts in main store (so that it can translate addresses) and how long the
segment is (so that it can check each access and forbid those that exceed the segment).
These quantities are sometimes called thebase and thebounds of the segment. Instead of
building two tables, an address-translation table and a virtual-store descriptor table, the
two functions are combined in the address-translation table, declared in line 6 below.

1 const
2 BitsPerPhysicalAddress = 24; { for example }
3 type
4 PhysicalAddress = integer; { BitsPerPhysicalAddress bits }
5 var
6 AddressTranslationTable =
7 record
8 Start : PhysicalAddress;
9 Size : integer; { length of virtual space }
10 end;

A physical address might not fit in one integer because the machine may have more phy-
sical store than can be addressed at one time, and integers may have only enough bits to
address the largest virtual store. This detail can be resolved by using extra words for
physical addresses. Another common approach is to truncate ap -bit physical address by
retaining only the upperv bits, wherev is the length of the largest virtual address. The
lower p −v bits are then assumed to be zero. This approach only allows physical
addresses to be represented correctly if the lowestp −v bits are in fact zero.

This method requires segments to be aligned on (p −v)-bit boundaries. For exam-
ple, if virtual addresses are 18 bits long, but physical addresses are 24 bits, segments
must start at physical addresses that end with six zeros, that is, addresses divisible by 64.
As we saw with partitions, alignment wastes the physical store between the end of one
segment and the beginning of the next because the latter must be aligned. In any case,
the operating system designer has no choice in this matter; the design of the address-

Single segment 71

translation table is part of the hardware.
Each process needs its own address-translation table. Since the table is only about

two words long, it is quite inexpensive to store it in the context block for the process.
When the kernel switches context to this process, it copies the table to the hardware’s
base and bound registers. The hardware may have separate versions of these registers for
privileged and non-privileged state to make context switching more efficient. The algo-
rithm used by the hardware on every access is simple:

1 procedure Translate (VA : VirtualAddress) : PhysicalAddress;
2 begin
3 with AddressTranslationTable do
4 if (VA < 0) or (VA ≥ Size) then
5 trap("out of range");
6 else
7 Translate := Start + VA;
8 end; { if }
9 end; { with }
10 end Translate;

Figure 3.7 shows this algorithm. Figure 3.8 shows a concrete example that uses decimal
notation and assumes that a virtual address is three digits long and that physical storage is
20,000 bytes.

no

<

no
yes

yes
>

0

ok

+

sizestart

address-
translation

table

checking

translation

virtual
address

address
physical

out of range

Figure 3.7 The translation algorithm for a single segment

72 Space Management Chapter 3

Start 13426
Size 726

��������������������������������������

Virtual address Physical address
0 13426

232 13658
233 13659
725 14151
726 trap: out of range
999 trap: out of range

1436 trap: out of range���������������������������������������
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 3.8 Example of address translation

3.2 Benefits

The single-segment approach is much more elegant than the partition approach.
Processes benefit in two ways: All programs may assume that they start at location zero,
and they never need to establish addressability. In fact, the binding to physical addresses
is performed at access time, that is, on every access to virtual store. In addition, a pro-
gram that runs out of room can request more from the operating system. Such a request
may block the process for a while (in medium-term scheduling) as the storage manager
rearranges physical store, but as long as the process does not require a larger space than
physical store permits, the request can be granted.

The operating system also benefits from the single-segment approach. A process
residing in a wait list may be swapped to backing store, freeing a contiguous piece of
physical store for some other process. When the previously swapped process is ready
again, it may be brought into main store anywhere that it fits. The storage manager need
not place it in exactly the same position as before, as long as its context block reflects its
current location.

Likewise, in order to make room for new processes, the storage manager may
shuffle processes around within physical store. Shuffling collects all the free space into
one large piece. A process that would not be able to fit in any of the previous smaller
pieces might fit there. Shuffling is sometimes called ‘‘compaction’’ because it squeezes
all the free space out of the region in use. Figure 3.9 shows the results of shuffling the
processes we showed in Figure 3.6. Now there are no tiny, useless holes between seg-
ments. The processesA andB need not know that shuffling has occurred; their virtual
space is untouched.

Unfortunately, the single-segment approach has its drawbacks, too. Sharing
between processes is not possible except for complete sharing, which is not very useful.
Swapping and shuffling can be quite expensive. It has been estimated that as much as 30
percent of the time spent by Tops-10, an operating system for the DEC PDP-10, is spent

Single segment 73

423219

physical main store

0 64K

0

0 013K 10K

19K

process A process B

kernel

Figure 3.9 Result of shuffling

in a single instruction, the Block Transfer instruction, which is used for shuffling.
SCOPE, the operating system for the CDC 6600, reduces this cost by shuffling only when
a process terminates. At that time, all free space is collected into one region.

3.3 Placement and replacement policies

When a segment is to be swapped in or created, where should it be placed? When not
enough room is free to hold the segment, which segment should be swapped out? These
policy questions are not particularly easy to answer. We can, however, present some
guiding principles.

Several pieces of physical store may be currently available for a new segment.
The best-fit method picks the free piece that will leave the minimal (but non-negative!)
amount of waste if the new segment uses it. This method is generally very bad, since it
leads to a proliferation of tiny and therefore useless free pieces and thereby forces large
shuffle operations. Thefirst-fit method picks the first free piece that is large enough, no
matter how much waste there may be. This method is better, but if the algorithm always
starts searching from the start of physical store, small pieces tend to cluster near the front.
The average search therefore requires probing about half of all free chunks. Figure 3.10
shows how first fit and best fit differ in choosing a region of free space. The recom-
mended allocation method iscircular first fit, which is like first fit but starts the search at
the point that the previous search left off instead of always starting from the beginning of
physical store. Now only a few probes are needed.

Two cautions are in order. First, free space allocationwithin processes shows very
different behavior. Most applications require only a few different sizes of space. It is far
more efficient to allocate each different space size from a different pool. Adaptive

74 Space Management Chapter 3

desired size

best fitfirst fit

10

13 11 12

Figure 3.10 First-fit and best-fit policies

mechanisms that discover the appropriate sizes as they are called for can be used effec-
tively. Second, circular first fit runs into unexpected problems when the total available
space is much larger than the average request but some requests are large. The steady-
state situation distributes moderate-sized free chunks throughout the total space, leaving
none large enough for the occasional large request. In this case, noncircular first fit, even
though expensive, leads to higher overall utilization.

To implement any of these methods, the storage manager needs to keep track of
which pieces of physical store are in use and which are free. Two data structures are
available for this purpose. In the first, called theboundary-tag method, each free piece
has pointers (physical pointers, of course, which may require more than one word, as dis-
cussed earlier) that link all free pieces in a doubly linked list. They don’t have to appear
in order in that list. Also, each piece, whether free or in use, has the first and last words
reserved to indicate its status, free or busy, and its length. When a free block is needed,
the doubly linked list is searched from the last stopping point until an adequate piece is
found. If necessary, it is split into a new busy piece and a new free piece. If the fit is
exact, the entire piece is removed from the doubly linked free list. When a piece is
returned to free space, it is joined to the piece before it and after it (if they are free) and
then put on the free list.

The other data structure is abit map with one bit for each chunk of physical store.
If chunks are as small as one word, the bit map will be unreasonably large. Therefore,
chunks are perhaps 16 or 32 words. If the hardware requires segments to begin at
(p −v)-bit boundaries, then a reasonable chunk size is 2p −v . The bits in the bit map are
packed into contiguous words. Each free chunk may be represented by a zero, and each
busy chunk by a one. Finding a free piece of sizec chunks is equivalent to finding at
leastc consecutive zero bits in the bit map. When a piece is freed, the corresponding bits
are reset to zero; it is not necessary to join the piece to its neighbors explicitly.

When adequate room is not available for a new segment, a choice must be made
either to swap out some segment or to shuffle. Generally, shuffling takes less time than
swapping, but no other activity can proceed meanwhile. Occasionally, swapping out a
single small segment will allow two medium-sized free pieces to coalesce into a free
piece large enough to satisfy the new segment. A policy to decide whether to shuffle or
swap could be based on the percentage of time the storage manager spends shuffling. If
that time is less than some fixed percentage, which is a tunable parameter of the policy,
then the decision would be to shuffle. Otherwise, some segment would be swapped out.

Single segment 75

When it has been decided to swap out a segment, either because shuffling is con-
sidered too expensive or because it wouldn’t help anyway, which segment is the best vic-
tim? First, processes that are in wait lists are good victims. However, in some situations
a waiting process must not be swapped out. If the process is waiting for completion of
some transput and the operating system has told the relevant device to perform the
transfer directly to main store (by a technique known asdirect memory access or DMA,
which is described in Chapter 5), the segments involved must not be swapped out or even
shuffled until the transfer is complete. Most DMA devices do not translate addresses but
rather deal directly with physical addresses. Even those that do translate addresses might
get confused if the translation table changes in the middle of a transfer. We thereforetie
down any segment that is undergoing DMA transput, rendering it unfit for swapping or
shuffling.

For segments that belong to waiting processes and are not tied down, one policy
would be to pick the one that belongs to the process that has been waiting the longest.
Instead of discussing the ramifications of this policy here, let us defer that discussion to
our treatment of paging, which has a similar problem.

If the foregoing methods have still not resulted in adequate space, some ready pro-
cess must be swapped out. We will place such a process in a main-store wait list (in the
medium-term scheduler). Once a process has entered that list, it should remain there for
a while, or the cost of swapping it out is not justified by the amount of use we make of
the space it makes available. Once a process is released from the main-store wait list, we
should try not to penalize it again in the near future. The medium-term scheduler is in
charge of the policy that honors some processes with ready status and victimizes others
by swapping them out.

4 TWO SEGMENTS

The method just discussed, which gives every process a single segment, can be general-
ized. The first extension is to give each process two segments. In fact, the DEC PDP-10
does just that.

Virtual space is divided into two non-contiguous regions. They can be dis-
tinguished by the convention that addresses with a 1 in the most significant bit belong to
the ‘‘upper’’ segment. The hardware uses two base-bound registers, one for each seg-
ment. With two segments, sharing is finally possible. The convention is to put the
instructions of shared programs, like compilers and editors, in the upper segment and to
put local data in the lower segment.

It is important that the shared segment not be accidentally or maliciously modified.
For this purpose, a ‘‘permissions’’ field is placed in the base-bound register, that is, the
address-translation table, which now looks as follows.

76 Space Management Chapter 3

1 const
2 BitsPerPhysicalAddress = 24; { for example }
3 type
4 PhysicalAddress = integer; { BitsPerPhysicalAddress bits }
5 AddressTranslationEntry =
6 record
7 Start : PhysicalAddress;
8 Size : integer; { length of virtual space }
9 Permissions : set of (Read, Write, Execute);
10 end;
11 var
12 AddressTranslationTable =
13 array 0 : 1 of AddressTranslationEntry;

The three permissions in line 9 require some explanation. ‘‘Read’’ means that the pro-
cess may access the segment to find operands for operations. ‘‘Write’’ means that the
results of operations may be stored in the segment. ‘‘Execute’’ means that the process
may access the segment to find instructions. A common arrangement would be to have
Read and Write permission on the lower segment and only Execute permission on the
upper one.

The upper segment is sometimes shared for a different purpose, however. Very
large programs cannot fit in one address space. They are split into several processes that
communicate through shared data. Those shared data are placed in a shared upper seg-
ment. Now the upper segment has Read and Write privilege, whereas the lower has only
Execute. Other combinations are possible as well.

Data structures to keep track of shared segments are more complicated. If a seg-
ment should be swapped out, it must be marked that way in the context block of each
process sharing it. To find those processes, an auxiliaryshared-segment table is prefer-
able to a complete search of all the context blocks. This table lists all shared segments
and the processes that are using them.

Policy decisions for swapping shared segments are also more complicated. A
shared segment should be less likely to be swapped proportionally to the number of non-
blocked processes that are using it. Tying shared segments down, however, is not a good
idea because the processes that share the segment might all be in wait lists for a long
time.

Instead of discussing the two-segment case in any greater detail here, let us post-
pone our curiosity and turn immediately to the more general case.

5 SEGMENTATION

We will now allow each process to have a number of segments, numbered 0 through
n −1, where the process hasn segments. There will be some limit on the number of seg-
ments permitted, determined, of course, by the hardware. On the DEC PDP-11, there can
be eight segments, each 8K bytes long. This limitation, both in the number of segments
and in their maximum length, has led operating systems for the PDP-11 either to ignore
segmentation entirely and give each process just one contiguous space or to restrict the
use of segments. Unix, for example, gives each process three segments. The first is for

Segmentation 77

instructions and may be shared. The second is for data, and the third is for the stack.
Each of these segments of virtual space may be composed of several adjacent hardware
segments. For example, one segment of virtual space could be 23K bytes long by occu-
pying three hardware segments on the PDP-11.

Having lots of variable-sized segments can be an advantage. Segmentation allows
the programmer or the compiler to partition thename space of a program — that is, the
space of identifiers such as variables and procedures — into discrete segments. Hardware
segmentation supports program modularity. For example, a program written in Pascal
usually has to check the subscripts of eacharray referenceto make sure they are within
bounds. If a separate segment is devoted to that array, the hardware can automatically
check the subscripts and relieve the software of that burden. It is also natural to put
library routines in segments by themselves and then share those routines among all the
processes that might need them.

5.1 Implementation

It is no longer sufficient to use the most significant bit of a virtual address to distinguish
which segment is being used. Instead, the topm bits of each virtual address are used to
select one of 2m segments. Of course, the maximum number of segments is therefore
2m . The remaining bits are used to select theoffset within the segment. The translation
table now has an entry for each segment, so we call it asegment table. That entry con-
tains the start, size, and permissions of that segment:

1 const
2 BitsPerPhysicalAddress = 24; { for example }
3 BitsPerVirtualAddress = 16; { for example }
4 BitsPerSegmentAddress = 6; { for example }
5 BitsPerOffsetAddress = BitsPerVirtualAddress − BitsPerSegmentAddress;

6 SegmentLimit = 2BitsPerSegmentAddress;

7 OffsetLimit = 2BitsPerOffsetAddress;
8 type
9 PhysicalAddress = integer; { containing BitsPerPhysicalAddress bits }
10 AccessType = (Read, Write, Execute);
11 SegmentTableEntry =
12 record
13 Start : PhysicalAddress;
14 Size : integer; { length of virtual space }
15 Permissions : set of AccessType;
16 Present : Boolean;
17 end;
18 var
19 SegmentTable : array 0 : SegmentLimit-1 of SegmentTableEntry;
20 NumberOfSegments : 0 .. SegmentLimit;

If we use the numbers suggested in the declarations (lines 2−4), virtual addresses are 16
bits long. Virtual space is therefore limited to 64K bytes. A process may have a virtual
space ranging anywhere between 0 bytes and this limit, divided into segments. Of the 16
bits, 6 are used to name the segment. A process may therefore have at most 64 segments,
each with a maximum size of 1K bytes. The only way for a process to have a full 64K-
byte virtual space is to have all 64 segments and for each segment to be the full 1K bytes

78 Space Management Chapter 3

in length. In our example, a physical address is described by 24 bits. The largest amount
of physical store that may be placed on the machine is therefore 16M bytes. A particular
machine may have less store, of course. Main store for computers of this size is usually
purchased in increments of 256K, 512K, or 1M bytes.

The algorithm used by the hardware on every access can be represented as follows:
21 procedure Translate (VA : VirtualAddress; AT : AccessType) : PhysicalAddress;
22 var
23 Segment : 0 .. SegmentLimit - 1;
24 Offset : 0 .. OffsetLimit - 1;
25 begin
26 Segment := VA div OffsetLimit;
27 Offset := VA mod OffsetLimit;
28 if Segment ≥ NumberOfSegments then
29 trap("invalid segment number");
30 else
31 with SegmentTable[Segment] do
32 if not Present then
33 trap("missing segment");
34 { segment fault; not an error }
35 elsif Offset ≥ Size then
36 trap("offset out of range";
37 elsif not AT in Permissions then
38 trap("security violation");
39 else
40 Translate := Start + Offset;
41 end; { if }
42 end; { with }
43 end; { if }
44 end Translate;

Figure 3.11 shows the algorithm followed by the hardware on every access to translate
and check addresses. As a concrete example, consider the following situation. Again, let
us use decimal notation. Assume that a virtual address is three digits long and physical
store has 20,000 bytes, as before. Assume that the first digit determines the segment
number and the other two digits determine the offset.

Segment Table��

Segment number Start Size Permissions Present��

0 13426 26 RWX yes
1 2309 00 R yes
2 1000 23 WX yes
3 — 95 W no
4 ��

�
�
�
�
�
�
�

10000 100 RWX yes��

Number of segments = 5
R = Read, W = Write, X = Execute���
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Segmentation 79

address-translation table

sions
permis-

sizestart

segment offset

start

physical address

virtual address

Figure 3.11 Hardware translation for segmentation

��

Virtual address Access type Physical address��

0 R 13426
217 W 1017
217 R trap: security violation
232 R trap: offset out of range
394 R trap: missing segment, security violation
499 X 10099
725 X trap: invalid segment number���

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Several traps can apply tothe samereference. Forexample, the Readreference toloca-
tion 394 traps both because the segment is missing and because of security violation. If
the machine can only report one trap for areference, it isbetter to report traps that indi-
cate program error (like security violation) than those that indicate that help from the
storage manager is needed (like missing segment).

80 Space Management Chapter 3

5.2 Storing the necessary information

Missing segments are, of course, swapped out. The segment table must indicate that
accesses to such segments should generate traps. We have shown a Boolean (one-bit)
field called ‘‘Present’’ in the segment table (line 16 of the declarations) to indicate this
fact. Instead, we could have set the segment length to zero or removed all access
privileges. Then the hardware would still trap to the kernel, but now the kernel would
have to refer to the context block for the process to find out whether the trap signals that
the process is attempting an invalid access or a valid access to a missing segment.

Such treatment of the segment-length or permissions field is an example of the
mirror tables technique. Under this technique, the hardware table is intentionally
misleading in order to have the hardware take some special action that would be too
expensive in software. The actual state of affairs is honestly represented in a second set
of tables stored by the kernel. Mirror tables are used either when the hardware lacks
some needed field (for example, the hardware segment table lacks a Present field) or for
reasons of efficiency (for example, composite page tables for processes that are them-
selves operating systems).

Before a missing segment may be accessed, the storage manager must swap that
segment back into main store. To find it on backing store, the storage manager must
remember its location. Some hardware provides another field in the segment table for
this purpose. This field is ignored by the hardware. If the hardware provides only a
Present field, the storage manager can use the Start and Permissions fields to store the
backing-store address, if there is room. The use of the same field to mean different
things at different times is calledoverloading. If overloading is not possible, the storage
manager can save a mirror copy of the translation table in the context block, and this
copy can have a ‘‘backing-store location’’ field.

5.3 Swapping

Once the missing segment has been swapped back in, the kernel switches back to the
context in which the process was running. Its program counter is reset to the instruction
that failed previously. The hardware then tries to execute that instruction again. If all is
well, no new trap will occur. However, the instruction might still fail for several reasons.
It might require another operand from another segment that is also missing. In fact, a
single instruction on a three-address machine can cause five segment faults: one for each
of the two operands, one for the result, and two for the instruction itself if it lies on a
boundary between two segments. (We are not even considering the case where operands
can cross segment boundaries!) The storage manager keeps bringing in segments until
the process can continue. With luck, some other process is ready and can make use of
the processor while the segments are being swapped in.

The decision to swap out a segment does not completely inactivate the process that
was using it. As long as the process avoids accessing virtual addresses within that seg-
ment, it can continue to run. When it does require that segment, the hardware will trap to
the kernel. We call this event asegment fault. The storage manager will swap that

Segmentation 81

segment back in. While the segment is being swapped in, which takes on the order of 20
to 50 milliseconds (depending on what sort of backing store is used and how long the
segment is), the kernel switches to some other process. Once the segment is in, the first
process will be allowed to continue. It has no inkling that a segment fault occurred.
(Otherwise, the operating system would violate the Beautification Principle.)

When the storage manager needs to swap some segment out in order to make room
for some other segment, it is best to choose a segment that is not currently in use by any
process. Otherwise, a segment fault in one process may impede progress in other
processes as well. We will devote a great deal of attention to mechanisms to accomplish
this feat when we discuss paging.

One danger should be mentioned. Since a single instruction might require five or
more different segments in order to be executed, segments that have just been brought in
should not be subject to swapping out before they have even been used the first time, or
else the operating system might thrash by victimizing segments that are needed for the
current instruction.

Swapping out a segment is not always expensive. A segment that does not have
write permission (by any process that uses it) need not be written to backing store
because it has not changed since it was last on backing store. It is only necessary to reset
its Present field to false in the segment table and to reclaim its space. Similarly, writable
segments that have not been changed since they were last swapped in are cheap to swap
out. Some machines set a Boolean field called ‘‘Dirty’’ in the segment table entry to true
whenever a write access occurs to the corresponding segment. The storage manager ini-
tializes Dirty to false whenever it swaps the segment in. When a segment is about to be
swapped out, it only needs to be written to backing store if Dirty is true. Of course, this
mechanism requires that a copy be kept on the backing store of all segments that are
brought into main store.

5.4 Large segment spaces

On some machines, the number of bits devoted to the segment number is very large. For
example, the Honeywell 645, which supports the Multics operating system, has 18 bits of
segment number. Instead of using segments in a range from zero to some reasonably
small number, programs in such machines may use a few segment numbers scattered
within the enormous space of possibilities. The reason Multics uses so many segments is
that every subprogram that exists has its own segment number that is reserved for as long
as the subprogram is saved on secondary store; this time could be years.

The implementation just described does not work very well for large, sparse seg-
ment spaces because the segment table has one entry for each potential segment. The
hardware is certainly not going to refer directly to a table with 218 = 256K entries; such a
table would require more physical store than most computers have! Instead, a hashing
technique can be used, a technique that first converts the segment number into an index
in a hash table where the desired entry can be found. Another alternative is to apply pag-
ing to the segment table. To understand that solution, we must first understand paging,
which will be presented shortly.

82 Space Management Chapter 3

The hardware either stores the entire segment table in registers if it is short or uses
a cache to store the most frequently used entries, in conformance with the Cache Princi-
ple. If the hardware had to refer to main store each time it needed to translate an address,
the effective speed of the machine would be halved. The storage manager does not need
to know anything at all about the cache, except that whenever the kernel modifies the
segment table itself, for example when switching processes, the hardware must find out
which entries in the cache are invalid. Machines that have suchtranslation look-aside
buffers, as we will call these caches, have an instruction called ‘‘flush the cache,’’ which
informs the hardware that all the entries in its cache, if any, are no longer valid. The ker-
nel should execute this instruction as part of process switching.

5.5 Shared segments

Two processes that share a segment don’t have to use the same segment number, nor
need they have identical privileges over that segment. One process could call it segment
5 and have RX privileges, and the other could call it segment 1 and have WR privileges.
This segment has two separate entries, one in the segment table for each process. The
same physical segment may even appear twice in the virtual space of one process. How-
ever, sharing an instruction segment with different segment numbers can be difficult.
Such segments tend to refer to themselves(in jumps, for example). Thesereferences
cannot have the segment number as part of the instruction. Instead, they must refer to a
register that holds the segment number.

Shared segments cause problems with Dirty fields because a shared segment may
be written by processA, and then swapped out when processB is running. The hardware
only knows about processB’s segment table at this point, and the table will not indicate
that the segment is dirty unlessB has written into it. The storage manager must consult a
shared-segment table in order to track down all the Dirty fields that correspond to this
shared segment in all the context blocks for the processes that share it.

5.6 Unusable space

Segmentation creates three kinds of unusable space that cannot be applied to any process.

� Free pieces of physical store that are not in use at the moment are wasted. Some of
these pieces may be too small to be of any use until the storage manager shuffles
the current segments. We will call such unusable spaceexternal waste, since it is
outside the space of any process. We also saw external waste under the partition
method.

� Context blocks must hold copies of the segment table during the time that a process
is not running. Space devoted to the segment table cannot be put to other uses
when the process is running; it is a fixed cost of segmentation. If the segment
tables are large, they may be swapped out to reduce this cost. Space that is

Segmentation 83

unusable because it is needed for these tables we will calloverhead space.
� A process might not be using all the space in a segment; it may have asked for a

segment that is bigger than is really needed. This type of unused area is called
internal waste.

Segmentation tends to have very little internal waste because processes generally request
exactly the amount of space they need. Any internal waste that exists is not the storage
manager’s fault; it is due to restrictions imposed by the hardware that require segment
lengths to be divisible by some power of 2.

External waste can be reduced by shuffling, but that solution is expensive. If seg-
ments are aligned to chunk boundaries, at the end of each segment there will be a small
amount of unavoidable external waste ranging from 0 bytes to 1 byte less than the chunk
size. On the average, this external waste will be one-half a chunk size for each segment
in main store. The amount of overhead space depends on how many segments are
allowed, a number that itself depends on the number of bits in a virtual address allocated
to the segment number. The more segments that are allowed, the more space is devoted
to overhead, and the smaller the segments may be. The amount of overhead space is not
under the control of the operating system designer except for the decision to swap unused
segment tables.

5.7 Initial loading and execution

A program needs separate segments to store different data items or subroutines.
Cooperation between the storage manager and the loader establishes the initial assign-
ment of segments in virtual store, and cooperation between the storage manager and the
running process can change that assignment dynamically. The load image must specify
in which segment each instruction or data section belongs. Instruction segments typically
get Execute permission only; data sections can be specified to be either Read/Write or
only Read. When the loader initializes virtual space, it can bring all the segments into
main store or can leave them on backing store. In the latter case, the program will slowly
acquire the segments it needs by faulting.

The Split service call might indicate the disposition of each segment in the parent’s
virtual space:

� Unique. The segment becomes the sole property of either the parent or the child.
The segment table for the other process indicates that the segment is absent.

� Shared. The segment is listed in the segment tables of both parent and child.
� Copied. The child gets a private version, initialized as a copy of the segment still

owned by the parent. The storage manager copies the data and builds a new seg-
ment, allocating backing store at the same time. Alternatively, the storage manager
can employ a form oflazy evaluation: Let child and parent share the segment, but
deny both of them Write permission. Perhaps neither will ever try to modify the
data. As soon as either one does, the hardware will trap to the storage manager,
which can make a new copy for the child and give both processes Write permission
over their (now private) copies. This technique is calledcopy on write.

84 Space Management Chapter 3

A process that wants to change the structure of its virtual store dynamically can use
a variety of service calls:

� GetSegment(descriptor) / ReleaseSegment(segment). The first call returns
the segment number of a newly allocated segment. The descriptor indicates the
desired size and permissions. The second call removes the given segment from the
caller’s segment table.

� GetStore(segment, size) / ReleaseStore(segment, size). These calls lengthen
or shorten a segment.

� ChangeSegment(segment, permissions). This call lets the process add or
remove Read, Write, and Execute permissions to or from its segment. The operat-
ing system may disallow changing permissions on shared segments.

6 PAGING

We now turn to the most common storage management method in use. Paging has the
same hardware flavor as segmentation except that the problem of allocating physical
store among different-sized segments is removed by insisting that each segment-like
chunk be exactly the same length. We will call each such chunk apage. The virtual
space of a process is subdivided into as many pages as are needed, depending on its
length.

We saw that segmentation supported software modularity by allowing a program’s
name space to be partitioned. Paging, in constrast, partitions virtual space without regard
to logical entities residing in that space. Paging is thereforetransparent to the process.
The fact that virtual space is subdivided into pages does not affect the way the process is
programmed or the way it treats virtual space. Later, we will examine combinations that
incorporate the semantics of segmentation as well as the regularity of paging.

Paging is a pleasant contrast to segmentation from the point of view of the
storage-manager implementer. Shuffling is eliminated because all free areas in physical
store are one page-length long. A page may be placed in any such free area; there is no
need to treat adjacent free areas together as part of a larger free area. We will treat phy-
sical store as an array of bins into which pages may be placed; these bins are calledpage
frames:

Paging 85

1 const
2 BitsPerVirtualAddress = 18; { for example }
3 BitsPerPhysicalAddress = 24; { for example }
4 BitsPerVirtualPageAddress = 8; { for example }
5 BitsPerOffsetAddress =
6 BitsPerVirtualAddress − BitsPerVirtualPageAddress;

7 PageSize = 2BitsPerOffsetAddress;

8 NumberOfPageFrames = 2BitsPerPhysicalAddress / PageSize;
9 { maximum allowed by the hardware; we may have fewer }

10 PageLimit = 2BitsPerVirtualAddress / PageSize;
11 { number of pages per virtual space }
12 type
13 PageFrame = array 0 : PageSize − 1 of byte;
14 PageFrameNumber = 0 .. NumberOfPageFrames − 1;
15 PhysicalStore = array PageFrameNumber of PageFrame;

If we use the constants suggested in lines 2−4, virtual addresses are 18 bits long. Virtual
space is therefore limited to 256K bytes. A process may have a virtual space ranging
anywhere between 0 bytes and this limit in increments of one page size. A virtual page
address is 8 bits. The 256K bytes of virtual store are therefore divided into 256 pages,
each having 1K bytes. The number of bits in an offset is 18− 8 = 10, which fits this page
size. The largest virtual space has 256K / 1K = 256 pages. A physical address is
described by 24 bits. As a result, the largest amount of physical store that may be placed
on the machine is 16M bytes. A particular machine may have less store. Physical store
can have as many as 16M / 1K = 16K page frames. On this particular machine, physical
space is much larger than any virtual space. This situation is found, for example, on
some 16-bit computers like the DEC PDP-11. More typically, virtual spaces are allowed
to be larger than the amount of physical store present.

Pages fit exactly into page frames in physical store, so there is no external waste.
However, internal waste is likely because a program might not need a virtual store whose
length is exactly divisible by the page size. On the average, each process will waste one
half of the last page. The choice of page size, which is a policy bound at the time the
operating system is designed, involves a tradeoff among various considerations:

(1) overhead space — least with large pages, since page tables have fewer entries.
(2) internal waste — smallest with small pages, since one-half of a small page is

small. Figure 3.12 shows the contrast between small and large pages for the
same virtual space. When pages are small, there is less internal waste, but the
page table is longer.

(3) cold-start faults — lower with large pages. These are the faults needed to bring
the program into main store the first time. With larger pages, there are fewer
total pages, hence fewer cold-start faults.

(4) page-fault rate — generally lower with small pages, assuming that a fixed amount
of main store is available. Regions of heavy use within a virtual space tend to be
relatively small, and the computer can fit more such regions into a fixed-size
main store if page size is small.

(5) efficiency of transfer between main and backing store — best with large pages,
since they take about the same amount of time as small pages to transfer. The
total transfer time is dominated by disk rotational and seek latency, not transfer
latency. (We discuss disk transfers in Chapter 5.)

86 Space Management Chapter 3

large pages

small pages

internal waste

internal waste

overhead space

overhead space

page table

virtual space

page table

virtual space

Figure 3.12 Wasted space and page size

Larger pages are generally better, unless they become so large that too few processes in
the ready list can have pages in main store at the same time. As main store has become
less expensive, page sizes have increased, until now they are sometimes as large as 8K
bytes, although sizes from 512 bytes to 4K bytes are more common.

6.1 Implementation

The address-translation table used by the hardware is called apage table. Its structure is
determined by the architecture of the computer. Entries in the page table do not contain a
Size field, since they are all the same length. As with segmentation, address translation

Paging 87

first splits the virtual address into two parts: thepage number and theoffset. Here is
how a typical translation table might look:

1 type
2 AccessType = (Read, Write, Execute);
3 PageTableEntry =
4 record
5 Location : PageFrameNumber;
6 Permissions : set of AccessType;
7 Present : Boolean;
8 end;
9 var
10 PageTable: array 0 : PageLimit-1 of PageTableEntry;
11 NumberOfPages : 0 .. PageLimit;

Because pages are aligned to page frames in physical store, the table need not keep phy-
sical addresses for the Location field; the page frame number suffices. Here is the algo-
rithm followed by the hardware to translate each access:

12 procedure Translate (VA : VirtualAddress; AT : AccessType) : PhysicalAddress;
13 var
14 VirtualPage : 0 .. PageLimit − 1;
15 Offset : 0 .. PageSize − 1;
16 begin
17 VirtualPage := VA div PageSize; { performed by extracting bits }
18 Offset := VA mod PageSize; { performed by extracting bits }
19 if VirtualPage ≥ NumberOfPages then
20 trap("invalid page number");
21 else
22 with PageTable[VirtualPage] do
23 if not Present then
24 trap("missing page"); { page fault; not an error }
25 elsif not AT in Permissions then
26 trap("security violation");
27 else
28 Translate := Location*PageSize + Offset;
29 end; { if }
30 end; { with }
31 end; { if }
32 end Translate;

Figure 3.13 shows the algorithm followed by the hardware on every access to
translate and check addresses. This algorithm involves checking the page table, which is
typically in main store, for every translation. (Some early machines, such as the Nova
3/D, stored page tables in high-speed registers, but this design has become less popular
with potentially large page tables.) To reduce the time required for translation, many
machines provide atranslation look-aside buffer (TLB) to hold the most frequently
used parts of the current page table. The hardware simultaneously tries to find the
desired entry in the TLB and in main store. If the entry is in the TLB (there is a cache
hit), the hardware finds it very quickly (on the order of 100 nanoseconds) and aborts its
attempt to get the entry from main store, an operation that would have taken about one
microsecond to complete. If the entry is not in the TLB (there is a cache miss), the
main-storereference isallowed to complete, and its value is not only used for address
translation but also placed in the TLB for future use. We will postpone discussing which
entry in the TLB is discarded in this case; the policies are very similar to policies we will
introduce for page replacement. Typical translation look-aside buffers can achieve a 95
percent hit ratio.

88 Space Management Chapter 3

address-translation table

physical address

virtual address

permis-
sionsframe present

offsetpage

frame

Figure 3.13 Hardware algorithm for translating page-oriented access

Here is an example of a paging situation with two processes,A and B. We will
assume that both are simultaneously using parts of physical store. For simplicity, we will
make virtual addresses two decimal digits, of which the first is the page number and the
second is the offset. We will also show the contents of a translation look-aside buffer
that holds two entries of the current page table. For this example, we will not let the TLB
entries change, even if a cache miss occurs.A is currently running, so entries in the
translation look-aside buffer refer to it.

Page table for process A���������������������������������

Virtual page number Page frame���������������������������������

0 7
1 8
2 absent
3 ��

�
�
�
�
�
�

4���������������������������������

Number of pages = 4�����������������������������������
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

Paging 89

Page table for process B���������������������������������

Virtual page number Page frame���������������������������������

0 2
1 absent
2 �

�
�
�
�
�

8���������������������������������

Number of pages = 3�����������������������������������
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

Translation look-aside buffer (A is active)���������������������������������

virtual page number page frame���������������������������������

1 8
3 4�����������������������������������

�
�
�
�

��
�
�
�
�

��
�
�
�
�

Main Store���

0 1 2 3 4 5 6 7 8 9���

B(0) A(3) A(0) A(1)
B(2)���

�
�
�
�

��
�
�
�
�

Translations

��

Virtual address Physical address��

71 cache miss, invalid page trap
14 84
23 cache miss, page fault
06 76 (cache miss)��

�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

6.2 Security and sharing

The same security scheme that we saw for segmentation can be applied to paging. Page
table entries may specify permissible access independently for each virtual page.
Because each page has separate permissions, different items that require different access
restrictions, such as instructions and data, should not reside on the same page. Sharing
instructions between processes also requires that data be separated, or else some data
may be inadvertently shared, a situation that could confuse both processes. However,
because the process does not involve itself in the concept of pages, separating instruc-
tions from data on separate pages is not natural to the process. Still, compilers and
assemblers can distinguish instructions from data and can pass this information on to the
linker. The linker, in turn, can segregate regions that require separate access restrictions
and can make sure that each starts on a new page. (This practice increases the amount of

90 Space Management Chapter 3

internal waste.) The load image is then marked so that the loader can identify and prop-
erly restrict access to each region.

One clever idea, found in VMS and Dynix, is for the linker to put nothing in the
first page of virtual store. This page is then marked invalid by the storage manager. If
the process accidentally tries to follow a null or uninitialized pointer, there is a good
chance that it will generate an access into that first page. which will cause a trap.

6.3 Case study: Multics

Multics is an operating system designed for the Honeywell 645 computer. It was
developed at M.I.T. in cooperation with Bell Labs and the computer department of Gen-
eral Electric. Since its design around 1965, it has been in use at M.I.T. and elsewhere,
and a version of it is now marketed by the Honeywell Corporation.

Multics combines paging and segmentation. This structure is a natural conse-
quence of two design goals. First, the designers wanted to allow processes to refer to
enormous numbers of segments. They allocated 18 bits of each address to the segment
name. The segment table can therefore be much too long to maintain in main store, so it
must be paged. Second, they wanted to allow individual segments to be quite large.
They allocated the other 18 bits of each address to the offset within the segment. Main
store could hold only a few segments of full size. Therefore, segments are themselves
paged. Of the 18 bits showing offset in a segment, 8 indicate the page and the other 10
the offset within the page. A virtual space therefore has up to 218 = 256K segments, each
segment has up to 28 = 256 pages, and each page has 210 = 1K words. (Actually, pages
of 64 words are available, but we will ignore them.) The total virtual space is described
by 36 bits, representing 64G words. The top 18 bits, [0..17], represent the segment
number. The next 8 bits, [18..25], represent the page number, and the lowest 10 bits,
[26..35], represent the offset within the segment.

Each process has its own segment table. This table is placed in a segment of its
own (the ‘‘descriptor segment’’) that is usually not in the virtual space of the process.
Each entry in the segment table has the following information.

� a pointer to the page table for this segment
� the length of the segment (in pages)
� permissions for the segment (read, write, execute, use as stack)
� a Boolean Present field (if false, the entire segment, and possibly its page table, is

swapped out)

The segment table is found by the hardware through a register that looks just like one of
the segment table entries. This register, called the DBR for ‘‘descriptor base register,’’
holds a segment table entry for the segment table. The 36-bit program counter is stored
in another register.

Each segment, including the descriptor segment, is described by a page table. The
page table holds one entry for each page in the segment, storing the following informa-
tion.

Paging 91

� the page frame that holds this page
� a Boolean Present field (if false, this page is swapped out)

We are ignoring fields usedfor page-replacementalgorithms, such as a Dirty and a Used
field for each page-table entry.

Each such entry fits within one word, and a page table has at most 256 entries, so
four complete page tables can be stored within a single page frame. We will assume that
only one page table is stored in a page frame, so a page-frame number is enough to
describe the location of a page table. Here is a formal description of the data structures
and the address translation algorithm:

1 const
2 BitsPerVirtualAddress = 36;
3 BitsPerPhysicalAddress = 24;
4 BitsPerSegmentAddress = 18;
5 BitsPerVirtualPageAddress = 8;
6 BitsPerOffsetAddress = 10;
7 PageSize = 1024 = 210; { words per page }
8 PageLimit = 256 = 28; { pages per segment }
9 NumberOfPageFrames = 214; { page frames per physical store }
10 SegmentLimit = 218; { segments per virtual space }
11 type
12 PageFrameNumber = 0 .. NumberOfPageFrames − 1;
13 AccessType = (Read, Write, Execute, Stack);
14 SegmentTableEntry =
15 record { fits in one word }
16 PageTablePointer : PageFrameNumber;
17 Size : 1 .. 256; { number of pages }
18 Permissions : set of AccessType;
19 Present : Boolean;
20 end;
21 PageTableEntry =
22 record { fits in one word }
23 Location : PageFrameNumber;
24 Present : Boolean;
25 end;
26 var
27 DescriptorBaseRegister : SegmentTableEntry; { in hardware }

92 Space Management Chapter 3

28 procedure Translate (VA : VirtualAddress) : PhysicalAddress;
29 var
30 Segment : 0 .. SegmentLimit − 1;
31 Page : 0 .. PageLimit − 1;
32 Offset : 0 .. PageSize − 1;
33 DescriptorPageTable : PhysicalAddress;
34 PageInSegmentTable : PhysicalAddress;
35 PageTable : PhysicalAddress;
36 PageFrame : PhysicalAddress;
37 begin
38 Segment := VA [0..17];
39 Page := VA [18..25];
40 Offset := VA [26..35];
41 DescriptorPageTable := DescriptorBaseRegister.PageTablePointer
42 * PageSize;
43 PageInSegmentTable :=
44 (DescriptorPageTable + Segment [0..7])ˆ.Location * PageSize;
45 PageTable :=
46 (PageInSegmentTable + Segment [8..17]) ˆ.PageTablePointer
47 * PageSize;
48 PageFrame := (PageTable + Page)ˆ.Location * PageSize;
49 Translate := PageFrame + Offset;
50 end Translate;

For clarity, all the security checks have been omitted. Even so, the algorithm is quite
complicated. Figure 3.14 shows the essential steps for translating the virtual address
(S,P,F). The circled numbers represent values that are computed at corresponding lines
in the program. This figure omits the fact that the segment table is itself paged. Lines
41−44 of the program perform the translation shown in dotted lines in the figure. This
part of the algorithm is shown in more detail in Figure 3.15. The machine uses a transla-
tion look-aside buffer to avoid address translation while finding the descriptor page table,
the page of the segment table, and the segment page table.

In both figures, the lettersa through f refer to the checks that might fail during
translation:

a The segment number is beyond the limit for this process.
b The process does not have the necessary access permission over any part of its vir-

tual store.
c The segment table is missing.
d The appropriate page of the segment table is missing.
e The page number is beyond the limit for this segment.
f The process does not have the necessary access permission over this segment.
g The page table for this segment is missing.
h The particular page accessed is missing.

Trapsc, d, g, and h are failures due to swapped-out information that must be brought
into main store before the access can complete. Trapsa, b, e, and f signal errors in the
process.

Shared segments are allowed in Multics. The storage manager maintains an
‘‘active-segment table’’ to record which segments are currently in use by any process.
Each entry in this table has the following information.

� the external name of the segment

Paging 93

Segment

Offset

Page

OffsetPageSegment

gfe

PresentPermitSize

cba

PresentPermitSize

26180

40

39

38

virtual address

PageTablePointer

PageTablePointer

descriptor base register

segment table

Frame Present

page table

page frame

45

48

49

h

Figure 3.14 Address translation under Multics

page in segment table

cba

Size Permit Present

Segment[8..17]

Segment[0..7]

PageTablePointer Size Permit Present

e f g

descriptor base register

PageTablePointer

PresentFrame

41

43

45

descriptor page table

d

Figure 3.15 Paging the segment table

� a Boolean Present field (if false, the entire segment is swapped out)
� a list of each process using this segment and the local segment number used by that

process for this segment

Paging 95

This table is useful in deciding whether to swap out a segment, and it also points the
storage manager to all the segment tables that are affected when a segment is swapped in
or out. Each process that shares a given segment has its own entry for that segment in its
segment table under its own local number for that segment. Each entry for the same seg-
ment points to the same page table. The page table for a shared segment is stored only
once.

6.4 Case study: VAX

The DEC VAX is a family of computers, all of which share the same address translation
techniques. Whereas Multics has two layers, the first segmentation and the second pag-
ing, the VAX has two paging layers; the user’s page table is itself paged. The reason for
this design is similar to the reasons for Multics: Processes are given so much virtual
space that the page tables can be absurdly long.

In the VAX, a virtual address is 32 bits long. Bits [0..1] indicate which of three
page tables to use. Each process has two page tables. The first is intended for program
and fixed-size data, and the second for data structures that grow, like a stack. The third
page table is shared by all processes and by the kernel, and is intended for shared subrou-
tines and for kernel program. Processes are not allowed to access kernel program. In a
sense, these three page tables are three predefined segments, so one could say that the
VAX supports one level of segmentation and two levels of paging. Bits [2..22] of a vir-
tual address is the page number. There are 221 = 2M pages in a full address space, so it is
unreasonable to store the entire page table in main store, which often contains only 2M
bytes. It is unreasonable even on the largest VAX holding 32M bytes of main store.
Therefore, the page tables are themselves paged. Bits [23..31] of a virtual address give
the offset within a page. There are 29 = 512 bytes in a page.

Access permissions are determined for each page based on a combination of the
processor state and the type of access required. There are four processor states, ranging
from the most privileged (kernel state) to the least (user state). There are two kinds of
access, read and write. Read permission grants execute rights, and write permission
grants read rights as well. One might expect 34 = 81 different permission combinations
for each page, requiring 7 bits (or 8 for the most straightforward encoding). Instead, only
3 bits are used to encode the 15 combinations in which any right granted to one processor
state is also granted to more privileged states. In the data structures below, we represent
these combinations with strings like NNRW, which means that the lower two processor
states have no access, the next one has read access, and the most privileged state has
write access.

96 Space Management Chapter 3

1 type
2 PageFrameNumber = 0 .. 221 - 1;
3 Protection = (NNNN, NNNR, NNNW, NNRR, NNRW, NNWW, NRRR,
4 NRRW, NRWW, NWWW, RRRR, RRRW, RRWW, RWWW, WWWW);
5 PageTableEntry =
6 record { 32 bits long }
7 Present : Boolean; { bit [0] }
8 Protection : Protection; { bits [1..3] }
9 Dirty : Boolean; { bit [4] }
10 PageFrame : PageFrameNumber; { bits [15..35] }
11 end;
12 var
13 KernelBaseRegister : PageFrameNumber; { in a register}
14 { base of the kernel page table, which is contiguous in physical store }
15 KernelLength : integer;
16 { Maximum kernel page accessible }
17 ProcessBaseRegister0, ProcessBaseRegister1 : integer; { 30 bits}
18 { interpreted in kernel virtual space }
19 ProcessLength0, ProcessLength1 : integer;
20 { Maximum process page accessible }

Figure 3.16 shows the tables and thetranslation algorithm for areference madeby
a process. This figure does not specify whether access is through page table 0 or page
table 1. As in the previous figures, Figure 3.16 shows the checks that are made. These
are the traps that can occur:

a The page table entry for this page is located beyond the end of kernel space.
b The kernel does not have the read permission for the appropriate page of the pro-

cess page table.
c The appropriate page of the page table is missing.
d The page is beyond the end of process space. (This check is made by comparing

all the bits of Page against ProcessLength.)
e The process does not have access permission for the type of access it is trying to

make on this page.
f The desired page is missing.

Of these, trapb is a kernel error, trapsa, d, ande are process errors, and trapsc andf are
ordinary page faults that are treated by swapping in the necessary pages. The VAX
architecture makes these tests in the orderd, a, b, c, e, f.

6.5 Paging in virtual machines

In Chapter 1, we saw how a virtual machine operating system provides a process
interface that appears identical to the hardware interface. We turn now to a subject we
deferred then, how storage management fits into virtual machine operating systems.

The most significant issue is how to emulate address-translation tables. For the
sake of concreteness, we will discuss paging, although the same issues arise for any of
the other storage management mechanisms we have seen. Each virtual machinePi run-
ning under the control of a single virtualizing kernelV needs to access what it considers
to be the true address-translation tables, since virtual machines are meant to look just like

Paging 97

Process Base Register

Virtual address

0 2 23

Page OffsetS

PageFrame Permit Present

Kernel Page Table

Kernel Base Register

Page[2..13]

PageFrame Permit Present

Page in process page table

Page[14..22]

Page Frame

Offset

512 bytes

512 bytes

a
b c

d

e f

Figure 3.16 Address translation in the VAX

the bare machine. However,V needs to use those tables itself to manage space for the
variousPi . Therefore, eachPi has its own private copy of the address-translation tables,
which it uses to convert what it considers physical space into a set of virtual spaces for its
own clients. Those second-order clients have second-order virtual space.

This situation is sketched in Figure 3.17.V, the virtualizing kernel, has two
clients, processesP1 andP2. Each of these inhabits its own virtual machine. To keep the

98 Space Management Chapter 3

example simple, these virtual machines are tiny: Each has a virtual main store of three
pages. The figure shows the page tables maintained byV to manage the two virtual
spaces, as well as a picture of main store as seen fromV’s point of view. The only fields
shown in the page tables are Page Frame and Present. Residing inP1 is an ordinary
operating system, which currently supports two processes,D1 and D2. Together, they
occupy all the main store available toP1. (In a more realistic example, we would have to
leave some room in that store forP1’s kernel as well.) Another operating system resides
in P2, and it has only one client, processE1.

Let us imagine thatD1 is currently executing. None of the five page tables shown
is appropriate for the hardware to use. WhenD1 refers to page 0, that should map to
page 2 ofP1, which is in page frame 6 of the main store. Similarly,D1’s page 1 should
map to page 0 ofP1, which is page 8 of main store. In other words, the proper page table
for D1 is acomposite of the tables forD1 andP1. In mathematical terms, this page table
composes the mappings specified by tablesD1 andP1. If P1 were also a virtualizing ker-
nel, more adjacent levels of the virtual-machine hierarchy would need to be composed.

page frame pres.
0
1
2

8

6

Y

Y
n

P1 page frame pres.
0
1
2

Y
Y

n

P2

2
4

0 1 2 4 6 83 5 7 9
2 1 2 0

P P P P2 2 1 1

page frame pres.
0
1
2

Y
Y

2

page frame pres.
0
1 Y

page frame pres.
0
1 Y

n
2

Y
0
2

1

D ED1
1

1

0

Y

210

2 11 DDD
011

210

11
2 0 1

E E E1

210

E1 virtual store

V physical store

P1 virtual store
P2 virtual store

100 1

D1 virtual store D2 virtual store

Figure 3.17 Two levels of address translation

Paging 99

The composite page tables to use forD1, D2, andE1 are shown in Figure 3.18. To
run D1 efficiently, its composite page table must be made available to the hardware. The
ordinary page tables become a mirror that contains the ‘‘truth’’ about main-store alloca-
tion, and the hardware uses a table fabricated from these mirror tables. The hardware
table is sometimes called a ‘‘shadow table’’ because it is just a fiction needed for efficient
execution.

P1 cannot be expected to prepare this composite table because it does not know
anything about theP1 table; it believes that it is executing on the bare machine. There-
fore, it is V’s job to prepare these composite tables. Composite tables must be updated
whenever any of their component tables changes. For example, the composite forD1
depends on two tables. IfP1 should decide to swap out one ofD1’s pages,P1 will modify
D1’s page table.V must notice this change and updateD1’s composite page table.V can
follow either of two strategies to make sure the composites are accurate.

� Eager evaluation: V can mapPi ’s virtual space so that whenPi modifies what it
thinks is a page table, it actually writes into read-only store. The resulting trap
informsV of the attempt. AsV emulates the change, it also updates its composite
table.

� Lazy evaluation: V can mapPi ’s virtual space so thatPi may read and write what
it thinks is the page table. WheneverPi tries to switch context to one of its
processes,V must emulate the context switch, at which time it builds a composite
table for the process to whichPi is switching.

The eager-evaluation method must be used for the page tables thatPi uses to control its
own (privileged-state) access to main store. It is the only method possible if
modifications to address-translation tables can only be made by privileged instructions.
The lazy approach can be much less work in the long run, especially if there are many
levels to the virtual-machine hierarchy. (Every virtualizing level builds its own compo-
site tables.) Just as we saw in Chapter 1, enhanced hardware can make composition
easier. The IBM 370 hardware can compose address-translation maps ‘‘on the fly,’’
relieving the virtualizing kernel of this responsibility.

0 1 2 4 6 83 5 7 9

2 1 2 0

page frame pres.
0
1
2

Y
Y

page frame pres.
0
1 Y

page frame pres.
0
1 Y

n
2

Y

D
E

D
1

1
Y

V physical store

6
8

4
2

E E D D1 0 11

Figure 3.18 Composite page tables

100 Space Management Chapter 3

7 PAGE-REPLACEMENT POLICIES

The sum of all the virtual spaces in use by all processes may vastly exceed physical store
size. This situation certainly holds under multiprogramming, whether batch or interac-
tive. It can even hold under a one-process regimen if the process is very large. When-
ever all of virtual space cannot fit in physical store, the storage manager must decide
which pages should be in main store and which on backing store. Although these deci-
sions may be made at any time, the storage manager is certainly forced to make a deci-
sion whenever a page fault occurs.

The process that suffers a page fault cannot continue until the missing page is
swapped in. Meanwhile, the kernel can switch to another ready process so that time is
not wasted. Typical times to swap in a page range from 20 to 50 milliseconds, during
which a lot of computing can take place.

If free page frames are available, a newly swapped-in page may reside in any one
of them; no replacement policy is necessary. However, if all page frames are in use, a
page-replacement policy must then decide which page frame to vacate by swapping out
its page. The following candidates for a page to swap out come to mind:

� Pages that belong to processes that have terminated. These pages don’t even have
to be swapped out; their frames can be overwritten immediately.

� Pages that belong to processes that have been blocked a long time. They are not
likely to be needed soon.

� Pages that belong to ready processes but have not been accessed in a long time.
We would hope that they are not needed soon.

� Pages that have not been modified since they were swapped in and therefore can be
overwritten without being copied back out.

We would like to preserve pages that are currently enjoying heavy use.
One goal of the page-replacementpolicy is to minimize the number of page faults.

This goal follows the Cache Principle. The accesses that processes make to virtual store
should be fast. Every page fault limits the speed of those accesses because a process that
suffers a fault must wait until a swap is completed. Swapping can reach a level at which
all processes present need to swap, with the result that no progress can be made. If this
situation persists, the operating system thrashes, spending all its time transferring pages
in and out of main store.

Page-replacement policies take the following approaches.

� Choose pages to swap in and out cleverly so that processes usually find the pages
they need already in main store.

� If clever choice is insufficient to keep the number of page faults low, reduce the
level of multiprogramming — that is, lower the number of processes simultane-
ously competing for the computing resource. More main store can then be dedi-
cated to each process, reducing the frequency of page faults. Processes that are

Page-replacement policies 101

entirely swapped out to keep the multiprogramming level low are kept on a main-
store wait list in the medium-term scheduler. After a while, these processes are
allowed to execute again, perhaps at the expense of other processes that are then
swapped out. The Hysteresis Principle tells us that once a process is swapped in or
out, it should be left in or out for a significant length of time, in order to recoup the
cost of swapping it.

No amount of cleverness in choosing swaps can prevent thrashing by itself; reducing the
level of multiprogramming is a necessary tool. However, reducing the multiprogram-
ming level alone is not wise, since higher levels of multiprogramming tend to treat long
and short jobs more fairly and allow more overlap of computing and transput.

We will begin our study of page replacement by simplifying the problem. Later,
we will return and introduce more complexities. To start with, let’s assume that one pro-
cess is ready but that its virtual space is larger than physical store. When it needs a page
brought in, one of its own pages must be discarded. We say the process is ‘‘paging
against itself.’’ Further, we will not try to be clever and bring in pages before they are
actuallyreferenced, nor willwe swap out a page before we need its page frame. We will
stick to puredemand paging, where all page traffic between main and backing store is
based on the demand generated by the process.

To evaluate different policies, we will use apage-reference string, which is a list
of all the pagesreferenced by theprocess in the order inwhich they arereferenced. For
example, a process with a virtual space of five pages, numbered 0 through 4, might have
a page-referencestring that starts as follows:

0 0 3 2 3 1 2 4 1 2 2 1 2 2 2 1 1 0 0 . . .

The same page may bereferenced two ormore times in a row, and some pages might be
referenced veryseldom or never. We willdefine each page-replacementpolicy by
describing which page, if any, is swappedout for eachreference in the page-reference
string. This decision will depend, of course, on how many page frames are available and
what thereferencestring looks like.

Actual referencestrings have been deduced by attaching hardware probes to com-
puters while processes execute. Thesereferencestrings do not have the behavior you
might expect, each page being equally likely tobe referenced atany time. Instead, a
phenomenon calledlocality is observed. At each instant in a program’s execution, a few
pages are in active use, and others are not in use at all. Locality is especially pronounced
in programs that use stacks and ones that scan arrays sequentially with small strides.

As the pages in the active set change, we say that the program has gone through a
phase change. Such a phase change is observed, for example, when a compiler finishes
its first pass and begins the second.

We will examine how various policies behave with respect to a synthesized page-
referencestring with 10,000referencesselected from a virtual space of 100 pages.
Details of how this string was generated can be found in the exercises at the end of the
chapter. It is built to display locality ofreference butnot phase changes. In this page-
referencestring, only 71 of the 100 pageswere actuallyreferenced. Thisfigure is not
surprising, since 10,000references isactually quite short for a program of 100 pages.

One way to present the behavior ofa page-replacement policy isto show how
many faults it suffers with our synthesizedpage-referencestring for different sizes of
physical space, ranging from 1 to 100 page frames. These results are often shown in a
fault-rate graph, as shown in Figure 3.19.

102 Space Management Chapter 3

knee

page faults

number of page frames

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 3.19 A typical fault-rate graph

When physical store only has one page frame, the fault rate is very high. When
physical store has 100 page frames, the fault rate is very low. This graph omits faults
that occur before all the page frames have been filled. That is, it ignores the firstf faults
when there aref page frames. When we ignore those initial faults, we are measuring the
warm-start behavior of the replacement policy instead of thecold-start behavior. A
cold-start curve would not trail off to 0 but rather to the number of pages actually refer-
enced (in this case, 71).

The point where the curve reaches a fairly low plateau, known as the ‘‘knee’’ of
the curve, indicates the number of pages that are needed for good behavior.

The fault-rate graph summarizes the entire life of the program. The program might
have several phases. If we were to draw the graph for each phase, we might find that
some phases have a smaller page requirement and others have a larger one.

The fault-rate graph can itself be summarized by the area under the curve, that is,
the total number of warm-start page faults for all main-store sizes. We will call this area
the characteristic number of the method when appliedto a particularpage-reference
string. The characteristic number is not a perfect measure of the value of a page-
replacement policy. In practice, one also needs to evaluate the amount of computation
necessary to achieve each method and the sophistication of the hardware needed to sup-
port it.

7.1 Random replacement

Page-replacement policies 103

To illustrate the Law of Diminishing Returns, we will start with a poor method that is
easy to describe. When a page frame must be freed, use the following rule:

������������������������������������

Random replacement������������������������������������

Select any page frame at random.�������������������������������������
�
�
�

�
�
�
�

Figure 3.20 shows the warm-start fault-rate graph on our synthesized page-
referencestring for random replacement as well as some of the other methods we will
study. The curves are in the same order as the table in the corner of the graph.

The curve for random replacement shows the highest fault rate, with a characteris-
tic number almost 115,000. It displaysanomalies, in which increasing the size of main
store occasionally makes the fault rate increase. The reason Random does so poorly is
that the page frame we evacuate often contains a page in the current region of locality.

7.2 Min

faults
cold

Min
LRU
FIFO
Random

60360
94159

104739
114694

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
80706050403020100

Method Area

page frames available

Figure 3.20 Faults for fourpage-replacementstrategies

104 Space Management Chapter 3

Min, our next method, suffers fewer page faults than any other method. Unfortunately, it
cannot be implemented. We use it as a yardstick for comparison with other methods. No
implementable method will have as few page faults, but we can see how close they come
to the unobtainable optimum.

The Min method follows a simple rule:

���

Min���

Select the page frame containing the page whose next
access will be farthest in the future.��

�
�
�
�

�
�
�
�
�

This choice delays the next page fault as long as possible. Of course, no storage manager
knows when each page will be accessed next, so the method cannot be implemented.
The curve for Min, the lowest in Figure 3.20, shows that it is better than the other
methods.

Looking at the curves for Random and Min, one might be led to the conclusion that
there is little benefit to be gainedby complex page-replacementstrategies. After all, no
matter how effective a strategy might be, it cannot beat Min, and any method ought to do
at least as well as Random. The region for improvement is not particularly large. The
characteristic numbers range only over a factor of 2 (from about 60,000 to about
115,000). At a main-store size of 20 page frames, the number of page faults ranges over
a factor of 3 (from about 650 to about 1950). The number of page frames needed to keep
the number of page faults to 1000 — a 10% rate — ranges over less than a factor of 2
(from 17 to 29).

However, factors of 2 and 3 can make a large difference to the behavior of the
operating system. Improving the fault rate increases the sustainable level of multipro-
gramming by the same factor. Programs that cannot execute without thrashing can only
be served by increasing the size of physical store or by improving the fault rate. A pro-
gram exhibiting thepage-referencestring pictured in the graph would manage acceptably
(1 percent fault rate) with 39 page frames under Min but would need 56 page frames
under Random. In addition, this single graphis not representativeof all page-reference
strings that occur in practice. The gap between Min and Random could be much greater
for some programs.

Figure 3.21 shows the same information as Figure 3.20, except that the curve for
Min has been subtracted from the other three curves. We see from this figure that the
page-fault rate of Random is particularly poor in comparison to Min when main store is
limited. When storage is extremely limited (fewer than 5 page frames, in our example),
all our methods do equally poorly in comparison with Min. When storage is plentiful
(more than 50 page frames, in our example), even Random does fairly well. In the inter-
mediate range, we can hope for significant improvements over Random. The FIFO and
LRU methods, which we will now discuss, justify that hope.

7.3 First in, first out (FIFO)

Page-replacement policies 105

beyond Min
Cold faults

page frames available
0 10 20 30 40 50 60 70 80

0

1000

2000

3000

Random

LRU

FIFO

Figure 3.21 Number of page-faults beyond the number for Min

Our first realistic attempt to perform better than Random is to discard pages that are not
expected to be needed for a long time. The first-in, first-out method keeps track of the
order in which pages are brought in. When a page frame is needed, this rule is used:

���

FIFO���

Select the page frame containing the page that has been in
main store for the longest period of time.��

�
�
�
�

�
�
�
�
�

This method is usually better than the Random policy because it tends to save recently
used pages, which have a higher probability of being used again soon because of pro-
gram locality. It also follows the Hysteresis Principle, in that it resists swapping pages
out for a long time after they are first brought in. Unfortunately, a frequently used page
still gets swapped out when it gets to be old enough, even though it may need to be
swapped back in immediately.

FIFO displays an unexpected behavior:For certainpage-referencestrings, the
fault-rate graph temporarily increases! An example of such ananomaly (first discovered
by L. Belady) is thefollowing page-referencestring, where the virtual space has 5 pages:

0 1 2 3 0 1 4 0 1 2 3 4

You can check that if physical store has three page frames, there are 9 faults: 3 for the
cold start and 6 warm faults. There are 3 accesses without fault. If physical store has
four page frames, however, there are 10 faults: 4 for the cold start and 6 warm faults.

106 Space Management Chapter 3

There are only 2 accesses without fault.
Anomalies are possible only inpage-replacement algorithmsthat lack thestack

property. An algorithm has this property ifat each point inany page-referencestring,
the set of pages that would be in ann -page-frame main storeis a subset of those that
would be in an (n +1)-page-frame mainstore. FIFO and Random lack this property. In
our example, after the firstreference topage 4, FIFO would have pages 0, 1, and 4 in
main store with three page frames but would not have 0 with four page frames. The next
methods we will see have the stack property, and they also perform better than FIFO.

7.4 Least recently used (LRU)

The most common technique in use is the LRU method, or some variation on it. The idea
behind this method is that the past is a mirror, albeit an imperfect one, of the future. The
Min algorithm cannot be implemented because it requires looking into the future. LRU
applies the same algorithm in the past:

���

LRU���

Select the page frame containing the page that has not been
accessed for the longest period of time.��

�
�
�
�

�
�
�
�
�

This method is based on the assumption thatthe page-referencepattern in the recent past
is a mirror of the pattern in the near future. Pages that have been accessed recently are
likely to continue to be accessed and ought to be kept in main store.

This assumption works fairly well. As Figure 3.21 shows, LRU is significantly
better than FIFO. Its characteristic number, 94159, is about 10 percent lower than the
characteristic number for FIFO.

In a humorous vein, we might attemptto find thepessimal page-replacementstra-
tegy. MRU, Most Recently Used, ought to behave pretty poorly. It discards the page
that has been accessed most recently. The theoretical pessimum is Max, which replaces
the very page that will be needed soonest in the future. Just like Min, the Max method
requires knowledge of the future, so it is not a feasible method. Figure 3.22 shows Max,
MRU, and Min, along with theircharacteristic numbers, forour syntheticpage-reference
string. It is not surprising that Max is terrible. Although MRU is bad, it behaves better
than one might expect.

Unfortunately, LRU is expensive to implement exactly. To find the page least
recently used, either a list of pages must be maintained in use order or each page must be
marked with the time it was last accessed. Hardware could certainly be designed and
built to accomplish either, but it would be quite expensive. Luckily, an exact implemen-
tation is not needed because a simple variant works almost as well.

Page-replacement policies 107

page frames available

Cold faults

Method Area

60360
295143
540239

Min
MRU
Max

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
80706050403020100

Figure 3.22 Faults for Max, MRU, and Min

7.5 Not used recently (NUR)

The expensive hardware we contemplated for LRU can be reduced to a Boolean (1-bit)
clock. True means ‘‘now,’’ and false means ‘‘significantly earlier.’’ A clock designed
like this does not even have to tick. Everytime a page isreferenced, thehardware marks
it (for example, in the page table) with the current time, that is, by setting a Used field to
true. The storage manager may reset the field to false at any time. The Used field is like
the Dirty field discussed earlier. The difference is that the Dirty field is only set to true
when an accesswrites in the page or segment, whereas theUsed field isset for references
of any kind.

When a page frame is needed, pages with true Used field have been used more
recently than those with false Used field. The replacement algorithm therefore tries to
find a page with false Used field to discard:

���

NUR���

Select any page frame whose Used field is false.��
�
�
�

�
�
�
�

To be fair and not victimize the same page excessively, the search for such a page should
circulate through the pages in the page table, each search starting where the previous

108 Space Management Chapter 3

search ended. (You should be reminded of the circular first-fit technique of storage allo-
cation for segments.) As each page is passed, its Used field is set to false, so it is certain
that some page will eventually be chosen. Every time the storage manager rotates
through all the pages in the page table, it discards all pages that have not been used
recently. NUR is occasionally called the ‘‘clock algorithm,’’ since it sweeps past each
page frame much as a hand on a clocksweeps past each pointon the circumference. The
NUR method yields a characteristic numberof 95949 forour synthesizedpage-reference
string, only 2 percent higher than true LRU.

There are many variations on this theme. We can reset the Used field to false by
different strategies.

� Don’t change Used fields to false as they are scanned when the storage manager is
looking for one to swap out. Instead, reset them all to false if a scan through all the
pages fails to find any that has not been used. This variant gives a characteristic
number 97741 on thesynthesizedpage-referencestring, about 4 percent higher
than true LRU.

� Reset all Used fields after each page fault, after the next victim has been selected.
This variant gives a characteristic number of 100604 on the synthesized page-
referencestring, about 7 percent higher than true LRU.

� Reset all Used fields to false on a regular schedule, say, 60 times a second.

The storage manager can also increase the memory capacity of the Used field by periodi-
cally right-shifting it into the most significant bit of atimestamp word kept for each
page. In this case, Used holds an integer, not a Boolean. We assume that true is
represented by a one and false by a zero. After four such shift events, for example, we
might have the following values for four pages:

�������������������

Page Timestamp�������������������

0 0101
1 0011
2 1001
3 1110���������������������

�
�
�
�
�
�

��
�
�
�
�
�
�

The first time the storage manager shifted the Used field into the initially zero times-
tamps, pages 0, 1, and 2 hadbeen referenced, but 3had not. The next time a shift event
occurred, pages 1 and 3 hadbeen referenced.Pages 0 and 3 werereferenced inthe next
interval, and pages 2 and 3 in the most recent interval. Based only on the highest-order
(that is, most recently modified) bit of the Used field, we would select either page 0 or 1
to discard next, since neitherwas referencedrecently. The additional history that we
have retained tells us that page 1 is a better victim, since it was not used for two time
intervals. In general, the page with the smallest timestamp in the Used field is the pre-
ferred victim.

Page-replacement policies 109

7.6 Second-chance cyclic

The methods mentioned so far do not take into account the extra effort involved in swap-
ping out a dirty page.The second-chance cyclicmethod tries to avoid such swaps. Once
more, we cycle through the page table looking for a victim. The best victim is a clean
page that has not been used in a long time — that is, one for which both Dirty and Used
are false. To keep the algorithm simple, we will ignore the Used field. As we search for
a victim, we keep passing dirty pages. As we do so, we reset Dirty to false. We will
eventually reach a page with Dirty set false even if we have to come full circle to the
place where the search began. The first such page is the victim.

Once the victim is chosen, it still might have to be written out even though it is
marked as clean. The Dirty field is no longer a true indication of whether the page is
dirty because our algorithm has reset that field without cleaning the page. Instead, we
save a mirror copy of the Dirty field in the context block. This copy is set to true when-
ever we reset a Dirty field to false. When we decide to swap out a page, we check the
mirror copy to see if it must be written out.

This algorithm not only gives a second chance to dirty pages, but it also continues
to give a reprieve to pages that are being written to frequently. The chances are good that
between the time we reset a Dirty field and the time we look at such a page again, the
process has written in that page, and the Dirty field protects the page from being swapped
out.

7.7 Global policies

We are now ready to examine somepage-replacement policies thatdo not force
processes to page only against themselves. After all, some processes need more physical
store than others because their regions of locality are larger. If every process could page
only against itself, we would have to make initial guesses as to the number of pages a
process needs, and these guesses would sometimes be too low and at other times too
high.

Any of the foregoing policies can be used in a global fashion. To implement the
global NUR orsecond-chance cyclicmethod, the storage manager must be able to scan
through all the page frames of main store, examining and modifying the Used and Dirty
fields. Unfortunately, few machines are designed with these fields in a hardwarepage-
frame table. Instead, they appear in the page tables for each process, because the
hardware must refer to those tables during address translation, and they are therefore the
obvious place to store this information. In this case, the storage manager builds a
software page-frame table that records thecorrespondence betweenphysical page frames
and virtual pages. During a scan of the page-frame table, the storage manager can find
the Used and Dirty fields in the per-process page tables. Here are declarations for a
software page-frame table:

110 Space Management Chapter 3

1 type
2 PageFrameTableEntry =
3 record
4 { All fields set by the storage manager }
5 Free : Boolean; { true if unoccupied }
6 Process : ProcessNumber; { which process owns this frame }
7 VirtualPage : integer; { where in virtual store of that process }
8 end;
9 var
10 PageFrameTable = array PageFrameNumber of PageFrameTableEntry;

Processes that are in wait lists will lose all their pages after a while. Processes in
the ready list will compete for page frames. The number of pages any process manages
to acquire will depend on how many it needs and how often the scheduler gives it a
chance to run. When a process is placed in the ready list after a long absence, it will
encounter a page fault almost immediately. It will be slowed by page faults during the
startup period but will finally have its most heavily used pages in physical store and will
be able to make progress. However, the number of processes in the ready list may be so
high that not one of them succeeds in swapping in an adequate number of pages. In that
case, each ready process will make very little headway before the next page fault, and
thrashing will set in.

The next few policies try to prevent this catastrophe. They do so by restricting the
level of multiprogramming.

7.8 Working set

The storage manager can estimate which pages are currently needed by each process.
This set is called theworking set of that process. Theworking set policy restricts the
number of processes on the ready queue so that physical store can accommodate all the
working sets of ready processes. Any other ready processes are placed in the main-store
wait list, where they remain until the medium-term scheduler decides to exchange some
of them for ready processes. (Refer to Figure 2.6 to see how the scheduling levels are
arranged.) When such a process is brought back to the ready list, the pages in its working
set may be swapped back in before it starts running. These swaps are examples ofpre-
fetching, which is the opposite of demand paging.

When the medium-term scheduler makes an exchange, the process that is moving
to the main-store wait list loses all its pages; they are all marked as available for swap
out. When a page must be swapped out, the best victim is a page that does not belong to
any of the currently ready processes. If there is no such page, any of the previous
methods, preferably some form of NUR, may be applied in a global fashion.

The working set for each process is defined as the pages that have been accessed
by the process during the most recentw units of virtual time. Virtual time is a clock
that is maintained separately for each process. (Whenever a process is switched out, the
amount of physical time it was given when it was running is added to the virtual time that
was recorded in its context block. The virtual time of a process that is running is the vir-
tual time recorded in its context block plus the amount of physical time it has been run-
ning.) If theworking-size parameterw is too small, the working set will not contain all
the pages that are really in use by the process. Ifw is too large, then as the program

Page-replacement policies 111

changes phases, the working set will contain pages that are no longer needed by the pro-
cess. Luckily,w is not particularly critical; values of 0.5 second are common.

To calculate the working set of a process properly would require an accurate vir-
tual clock. Whenever a page is accessed, the current time according to that clock is
recorded in the page table. The working set contains all pages whose access time is
within w of the present. This implementation is reminiscent of LRU, which we rejected
because it was too expensive.

7.9 Page-fault frequency (PFF)

The page-fault frequency policy employs an approximation of the working set. It
requires only the Used fields for each page and a real-time clock. Instead of recording
the time of each access, we make decisions about the working set only when a page fault
occurs. At that time we compare how long it has been since the previous page fault. We
will say that the (virtual) time lag is small if it is less thanp units of time, wherep is a
tunable parameter. If the time lag is small, we will just add the new page to the working
set. If the time lag is large, we first discard all pages from the working set that have not
been referencedsince the last page fault. The new page is, of course, added to the work-
ing set.

This policy can be implemented by resetting the hardware Used field to false every
time a page fault occurs. When the next fault occurs after a long lag, all pages that still
have a false Used field are discarded from the working set. A discarded page has its
Present field reset to false, but it is not swapped out. Instead, the storage manager adds
that page to a pool of reasonable victims for the next time a victim must be found. If the
process accesses that page again before it is chosen as a victim, the kernel receives a
missing-page fault, removes the page from the victim pool, and brings it back into the
working set.

To facilitate finding a victim, this pool of potential victims should be kept non-
empty. The length of the victim list is a barometer of multiprogramming effectiveness.
If the list is practically empty, too many processes are competing for physical storage,
and the level of multiprogramming should be reduced. If the list is very long, it may be
possible to bring in some process that has been stranded on the main-store wait list.

7.10 Working size

The working-size technique is another way to approximate the working set. Instead of
keeping track of all the pages in the working set, the storage manager maintains only the
size of that set. When a process is placed in the main-store wait list, its working-set size
is estimated by counting the number of pages it has recently accessed. This count can be
performed by examining Used fields. The process is not put back on the ready list until
that many page frames are available for it to use.

112 Space Management Chapter 3

7.11 WSCLOCK

The WSCLOCK method was recently proposed as a hybrid between NUR and Working
Set. As with NUR, it searches for pages to discard, starting with the page where the pre-
vious search left off. These searches are conducted in the page-frame table, not in any
particular process page table. When a page fault occurs in any process, a scan starts
through the table. Pages with true Used field are passed over, but the field is reset to
false. In addition, the kernel stores the virtual time of the owning process in a
‘‘Referenced-time’’ field inthat table. Referenced time is an estimate of the last time the
page was used.

If the scan encounters a page with a false Used field, the page might still be in the
working set of its owner. The current virtual time of its owner is compared with the
referenced time.If the difference is less thanw , the scan continues. Otherwise, the page
has left the working set and may be swapped out.

An entire scan through all page frames may fail to find a replaceable page. This
situation signals overcommitment of main store, a problem that can be relieved by reduc-
ing the multiprogramming level.

7.12 Missing Used field

The DEC VAX lacks a Used field. This flaw has led to a clever software simulation of
that field. The storage manager resets the Present field to false in the page table when-
ever it wants to reset the non-existent Used field. A mirror table indicates to the storage
manager that the page is still present. If the program accesses a page with false Present
field, the hardware causes a page fault. However, the storage manager is not fooled and
just sets Present back to true. At the same time, the storage manager has learned that the
page has been accessed, so it records that fact in its mirror table, which does have a Used
field.

This technique is fairly expensive because the trap takes some time to service
(about 250 microseconds), so it must be used carefully. The Present field must be reset to
false only occasionally, or the cost of handling phantom page faults will be unreasonable.

7.13 Classification of replacement methods

Now that we have looked at a fewpage-replacement methods, weshould step back and
examine the larger issues.

Page-replacement policies 113

When is a page swapped in? The first issue, surprisingly, concerns when
a swapped-out page should be swapped in. We have concentrated ondemand paging so
far, in which a page is brought in only when it is accessed by a process. Demand paging
has the advantage that it never brings in a page that is not needed. Other techniques can
reduce page faults by anticipating them before they happen.

The first method isprefetching, which we touched on earlier. When a process is
placed on the ready list after a long residence in a transput or main-store wait list, the
kernel restores the pages that the process had before it became blocked. Prefetching
works on the reasonable assumption that until the process is given back its working set, it
will not be able to make much progress. Instead of encountering a number of page faults
immediately, the kernel can save effort by scheduling all the working set to be brought in
before the process is placed back on the ready list.

Prefetching also applies the first time a process is started; instead of letting page
faults bring in the necessary pages, a selection of pages can be brought in initially.
Unfortunately, any guess about the correct number and identity of prefetched pages is
likely to be inaccurate to some degree. Sometimes, useless pages will be prefetched and
will waste main store until they are thrown out during normal replacement.

Another method isadvised paging, in which the process may inform the storage
manager through a service call that a particular page is about to be accessed and thus
should be swapped in or that a particular page will not be used again for a long time and
might as well be swapped out. Such a call would have this form:
� PageAdvice(starting address, ending address,direction). This call tells the

storage manager that the process is about to use the region in virtual space between
the two addresses, so it might swap the relevant pages in (if direction is ‘‘in’’) or
that this region will not be accessed for a considerable period (if direction is
‘‘out’’).

Advised paging takes advantage of the programmer’s or compiler’s knowledge of how
the program works, knowledge that can be more accurate than the storage manager’s.
However, the programmer has no knowledge at all of the other processes that are com-
peting in the ready list, but the storage manager does know. It would be foolhardy for the
storage manager to put too much credence in advice. At most, the storage manager might
turn off the Used field for a page that the process claims will not be used for a while,
making it a candidate for swap-out. For swapping in, the advice should most likely be
ignored.

The method calledclustering swaps in additional pages beyond the ones brought
in by demand paging. Not only the required page but the next few pages as well are
brought in at the same time. If adjacent pages in virtual store are placed in adjacent loca-
tions on backing store, the cost of bringing in a group of pages might be only slightly
higher than bringing in just one. We will see the source of this efficiency when we dis-
cuss file storage in Chapter 6. Once a particular page is accessed, the pages nearby have
a higher probability of being accessed soon. If they are not needed, they will soon be
swapped out. Since they have not been touched, swapping out requires no work at all.

Which page should be swapped out? We have already seen several
specific techniques for choosing a victim page to swap out. These methods can be
classified aslocal or global methods, depending on whether they pick pages from only
the process whose page fault requires finding a victim or from any process. Global

114 Space Management Chapter 3

methods may take into account scheduling information, such as the process priority, in
order to avoid removing all the pages from an important process.

Methods that maintain a pool of free page frames are calledpool methods. A page
can be added to the pool when it leaves the working set of its process. Alternatively, the
storage manager could continually place page frames in the pool, at a rate such that the
backing store is kept relatively busy. If this ‘‘background discard’’ algorithm is the sole
source of free pages, thrashing is avoided because pages cannot be brought in faster than
they are being swapped out.

No matter how the pool is created, dirtypages in the poolcan be ‘‘cleaned’’ by
writing them out to backing store whenever the backing store device is idle. Later, swap-
ping out the page will be free. If a process accesses a page that is in the pool, it is not
expensive to place the page back into the virtual space of that process. The pool thus lets
us resist swapping pages out, in keeping with the Hysteresis Principle. If a cleaned page
is removed from the pool and returned to a process, the cleaning has cost some effort, but
we hope not much.

We noticed that shared segments warrant special treatment. Since sharing on the
basis of individual pages usually doesn’t make sense, segmentation is joined to paging to
provide sharing. Shared pages are then elements of segments that are entirely shared.
Local methods don’t really make sense for a shared page because swapping it out has a
non-local effect. Instead, the entire segment can be considered a swappable entity. If it
is decided to swap it out, all its page frames are placed in the free pool, and cleaning is
scheduled for the dirty ones.

Pages that are tied down must not be swapped out. We have seen that pages
involved in transput must sometimes be tied down. If the pages of the kernel are subject
to swapping out, it must tie down those pages that hold the storage-manager programs for
both the policy and the mechanism of paging. Otherwise the kernel will suffer a page
fault from which it cannot recover. Also, some forms of real-time scheduling require that
paging cost be avoided; an entire process may be tied down if it needs guaranteed service
every tenth of a second. Some operating systems provide a service call by which a pro-
cess requests that a segment be tied down. The scheduler might favor such a process,
under the assumption that the more time that process receives, the sooner it will be wil-
ling to unlock the segment. This call should be used with discretion because it gives the
caller both a space and a time advantage over other processes in the ready list.

Startup-phase conflicts. All the policies that control the level of multipro-
gramming are subject to a phenomenon calledstartup-phase conflict. The startup phase
of a process is the period right after the scheduler has taken it from the main-store wait
list until the process has acquired its working set of pages. During this phase, the virtual
clock of the process moves very slowly because page faults are so frequent. If many
processes are in startup phase simultaneously, they compete for access to the backing
store. Their virtual clocks therefore advance still more slowly. In extreme situations, the
processor becomes underused, and every process in the ready list is in startup phase.

Startup-phase conflict can be controlled by restricting the number of processes
allowed to be in startup phase at one time. If there are too many such processes, new
additions to the ready list are delayed. The kernel can decide that a process is in the
startup phase by consulting its virtual clock. Any process whose virtual clock is less than
the tunable parameter ‘‘startup-phase virtual duration’’ is considered in startup phase.

Page-replacement policies 115

Another tunable parameter, ‘‘startup-phase process limit,’’ determines how many
processes are allowed to be in startup phase simultaneously.

It makes sense, by the way, to allow more than one process to be starting up at the
same time. We will see in Chapter 5 that the average time spent by the backing store in
retrieving a page can be reduced by increasing the number of outstanding requests to the
backing store. The time required to start two processes simultaneously can be less than
the time required to start them one after the other. The purpose of controlling startup-
phase conflict is to balance processor and backing store utilization.

8 PERSPECTIVE

Most modern operating systems use some form of space management, even operating
systems for personal computers and workstations. We have devoted quite a lot of effort
to paging because it is both complicated and very widely used. Paging works fairly well.
In a well-tuned operating system, a process will access about 50 percent of the pages in
its working set during any quantum. As long as main store is large enough to hold the
working sets of all the ready processes, very little time is wasted by swapping. Reducing
the level of multiprogramming cures thrashing when it occurs.

Unfortunately, many smaller computers, including the DEC PDP-11 and the
Motorola MC68000, do not store enough information when page faults occur to allow the
faulting instruction to be restarted. Segmentation is the primary facility implemented on
these machines.

More often, the operating system designer is constrained by the hardware of the
machine. The absence of a Used field has a major impact on the methods that are used.
Whether the hardware saves the Used and Dirty fields in the page table or in the page-
frame table also makes a difference. Newer machines have increasingly complex transla-
tion hardware. Two-layer page tables are not uncommon because processes that need
very large virtual stores need very long page tables. Only the active part of the page
tables needs to reside in main store.

We have seen that the storage manager has scheduling responsibilities as well as
storage responsibilities. This blurring of function is unfortunately common within
operating systems. In addition, the storage manager must deal with device drivers (dis-
cussed in Chapter 5) to swap pages in and out. Organizing the kernel to keep functions
separate and modular is not always easy. Figure 3.23 shows one way to structure the ker-
nel to contain the parts we have discussed so far. The kernel is not a monolithic program
but is composed of individual managers for different resources. The managers may com-
municate in a variety of ways, some of which we will see in Chapters 8 and 9. For now
we can assume that they share certain data structures such as process lists. The situations
that can arise are represented by interrupts from devices and by service calls and traps
from running processes. These interrupts, service calls, and traps switch context to the
kernel, which then executes the appropriate manager.

A clock interrupt causes the scheduler to be called. The scheduler might take this
opportunity to switch to a different process. A page (or segment) fault causes the storage
manager to be called. The storage manager might decide that a particular page frame

116 Space Management Chapter 3

envelope

disk driver

scheduler storage manager

clock disk

page

interrupt interrupt

fault
service call

kernel

processes

devices

Figure 3.23 Structure of the kernel

must be swapped out to make room for the page that this process needs. It asks the disk
driver to perform this work by placing a request in the disk queue. Meanwhile, it places
the process that suffered the page fault in a main-store wait list and lets the scheduler
switch to another process.

The disk driver accepts interrupts that tell it that work has been completed. (We
discuss device drivers in Chapter 5.) Once the disk driver has swapped out the page, it
can tell the storage manager, which might then request that a new page be swapped in.
After that page has been swapped in, the storage manager can place the long-suffering
process back in the ready list.

The envelope module shown in Figure 3.23 runs when no other manager has work
to do. It performs the actual switch back to the process. If the process generates a ser-
vice call, the envelope is the first part of the kernel to notice. The envelope can either
satisfy the call itself (for simple requests, like returning the current time of day) or pass
the request on to other parts of the kernel.

We began our discussion of virtual store by invoking the Beautification Principle.
Each level of hardware and software hides lower levels and introduces new structures.
At the bottom, physical store is arranged as a large array of words, each with a fixed
number of bits. Address-translation hardware groups these words into pages and intro-
duces address-translation tables. The paging storage manager erases page boundaries
and hides the tables, providing a linear array of words whose length is independent of the

Perspective 117

length of physical store. If there is a layer of segmentation above paging, several linear
arrays of words are grouped together to make up an address space. The result is far
removed, both in form and in function, from the original material from which all these
abstractions are built.

9 FURTHER READING

A good summary of virtual store techniques is given by Denning (1970). A substantial
amount of research has been directed to design, modeling, simulation, and measurement
of various space-management schemes. By far the greatest effort has been devoted to
paging. Smith (1978) has compiled a large bibliography of the relevant literature.
Belady, who showed that the Min algorithm is optimal (1966), also discovered the
anomalies that FIFO can produce in the fault-rate graph (1969). An article by Masuda
(1977) notices that a working set policy becomes less responsive as phase changes
increase in frequency. The value of the window sizew becomes critical in these situa-
tions. Babaoglu and Joy (1981) describe how they modified a version of Unix that used
segmentation to use swapping on the DEC VAX, which does not have a Used field. The
WSCLOCK page-replacementpolicy was developed by Carr and Hennessy (1981).
Database management systems haveatypicalpage-referencebehavior, which can lead to
poor results with standardpage-replacement algorithms.This issue is introduced in exer-
cise 25. More details can be found in Stonebraker’s article (1981).

Knuth (1973) gives a good review of the boundary-tag, first-fit, and best-fit storage
allocation. The warning about circular first fit in large spaces was given by Shore (1975).
Maintaining subpools for blocks of popular sizes has been suggested by Margolin (1971).

10 EXERCISES

1. In a single-segment scheme, the storage manager wants to shuffle. How should it
find which process corresponds to which busy piece of physical store?

2. Design a data structure for the shared-segment table in the two-segment organiza-
tion. How is the table addressed?

3. You are the president of Cheapo Computronics, and your star hardware designer
has suggested a brilliant idea: Implement segmentation, but let theleast significant
m bits of a virtual address be used to select the segment, and let the other bits
determine the offset. Should the designer retire or get a raise? Why?

118 Space Management Chapter 3

4. A process generally has no inkling when a segment fault occurs. Describe how a
process could use a TimeOfDay service call to guess that such a fault has occurred.

5. If we allow a process to have anywhere from zero segments to the maximum
number of segments allowed by the hardware, it takes one more bit to represent the
number of segments in use than to represent any particular segment. Why? What
implementation difficulty does that create? What can be done about it?

6. There is a similar problem for segment sizes. What is the problem?

7. What is the relation between the size of physical store and virtual store under seg-
mentation?

8. Suppose we wish to implement paging and want to use the load-image file as back-
ing store for instructions and read-only data as a way to save space on the backing
drum. What information must be stored in the load-image file? What constraints
should we place on that file?

9. How long is a process page table on the VAX?

10. On the VAX, a process may access kernel space. What prevents a process from
generating nuisance missing-page faults by trying to read regions in the kernel?

11. If a process releases the instructions segment in which it is currently executing,
describe in detail the actions taken by the kernel that lead inexorably to catas-
trophe. How should the kernel treat the disaster?

12. Should the address translation table be in the virtual space of the associated pro-
cess? Consider the ramifications of making the opposite decision.

13. Write a program to generatepage-referencestrings by using the following
approach, which was used to generate Figure 3.21. Alln pages of virtual store are
listed in order. Use the exponential distribution with mean√��n to pick a number
between 1 andn . The page at that point in thelist is the nextpage inthe reference
string. Move that page to the start of the list, and repeat the algorithm. (Elements
near the front of the listwere referencedrecently; those near the end have not been
referenced for along time.)

14. What properties of truepage-referencestrings are not exhibited by the ones gen-
erated by the program of exercise 13?

15. Use the program from exercise 13 to generate a graph like the one in Figure 3.21.

16. Design a combination of theNUR and second-chance cyclic page-replacement pol-
icies.

17. Given thereferencestring 45 2 1 4 3 5 4 3 2 1 5,draw the cold-start fault-rate
graphs for main store ranging between 1 and 7 pages, using Min, FIFO, LRU, and
two forms of NUR, the ordinary one (resetting Used to false in each page table
entry that the scan passes) and a variant (resetting Used to false everywhere in the
page table when all the Used fields are true).

18. If a machine offers several states, each with its own register set, why not use dif-
ferent states for different processes to reduce the process switch cost?

Exercises 119

19. Several processes sharing the same instructions are given separate register sets. (a)
Why not let them all use the same registers? (b) Why not divide up the registers
and let each process use a different subset in order to avoid duplication?

20. We claimed that segmentation hardware can check the subscripts of all array refer-
ences to make sure they are in bounds. When is this claim false?

21. Evaluate the suggestion that segments that are brought into main store can be dis-
carded from backing store. Under what circumstances would this mechanism be
useful? How could it prove costly?

22. Suggest an architecture that would allow Dirty fields for shared segments to be set
directly by the hardware.

23. The translation look-aside buffer on a particular machine has a 95 percent hit rate
and takes 100 nanoseconds to yield a value. Main store takes 1 microsecond to
read a value. The hardware for address translation needs to make one access to the
translation table per access and an additional 30 nanoseconds to complete the
translation. What is the average time per address translation?

24. When a process terminates, it may own a number of pages in physical store that
have the Dirty field true. What should be done with these pages?

25. A particular database program repeatedly scans an array of 1,000 pages. Each scan
starts with page 0 and continues to page 999. There is only enough main store to
hold 100 pages. None ofthe page-replacement policiesgiven in this chapter does
very well. Suggest a different policy that will do as well as Min for this program.

26. How can the child distinguish itself from the parent after a Split service call?

27. Consider a computer that supports two different page sizes, 512 bytes and 4K
bytes. All the pages in a virtual space must be of one size or the other. What
advantages can the operating system derive from this ability? How hard is it to
achieve these benefits?

28. Why is it necessary to use the eager method for updating composite address-
translation tables when a client updates a privileged-state table?

120 Space Management Chapter 3

chapter 4

RESOURCE DEADLOCK

We have dealt so far with two fundamental resources, time and space. Allocating these
resources is a matter of scheduling — that is, deciding which process should receive
which resources at a given time. The time resource is granted by placing the process in
the ready list and then letting it execute. The space resource is granted by allowing part
or all of the virtual space of the process to reside in main store.

Both time and space are special. Time — the ability to execute — is held by only
one process at a time (unless the computer is a multiprocessor). After the resource has
been held, it can be preempted and given for a while to another process. Space can be
held by many processes at once and may be preempted after a while. All regions of phy-
sical space are alike to the process. Every process requires both time and space.

We will devote this chapter to allocation of resources that represent non-sharable,
non-preemptable resources. Such resources represent extra facilities beyond space and
time, such as devices: files, printers, and tape drives. For example, a file might be res-
tricted so that only one process may use it at a time. Similarly, a printer or a tape drive
may be acquired by a process for a while and then given back. Finally, a process may
need five tape drives during the course of its computation, but not all at once.

Data structures within the kernel are often non-sharable, non-preemptable
resources. For example, the kernel might have an array of context blocks. When a new
process is started, a free context block must be allocated. As long as the process exists,
that context block is neither shared nor preempted. Similarly, the file manager (which we
discuss in Chapter 5) might have an array of descriptors for open files. When a file is
opened, a free descriptor is allocated, and must not be shared or preempted as long as the
file is in use. In a related vein, page frames that contain tied-down pages cannot be
shared (unless processes are sharing pages) and are not preempted.

Once a process has been granted such a resource, it is not possible to preempt the
resource without injuring the process or the resource. For example, if the use of a file is
preempted, the process cannot assume that when it gets to use the file again, it will be in
the same state as before. The process has been injured and most likely should just quit.
Even worse, the process may have left the file in an inconsistent state. For example, the

121

file may represent a load image that the preempted process was in the middle of linking.
Some links are complete and others are not. In this case, preemption injures the resource,
and it might never again be usable. The incompletely linked image cannot be loaded, nor
can the linking be finished.

Even though they are not preemptable, the resources we will discuss are allseri-
ally reusable. After one process has finished using a tape drive, some other process may
certainly use it without harm.

Another property of the resources we will discuss here is that they are both
discrete and bounded. This means that they come in individual chunks and that the
amount of the resource is limited, usually physically. For example, if an installation has
only seven tape drives, it makes no sense to acquire 3.4 of them or 8 of them. Time, in
contrast, is neither discrete nor bounded. The scheduler can divide it into pieces of any
size, and there is always enough to satisfy any finite process.

We will speak ofresource classes, which are sets of identical resources. If a pro-
cess does not care which tape drive it gets, then all tape drives are identical as far as it is
concerned, and they are therefore in the same class. Likewise, in an installation with
several line printers, it is often immaterial which line printer is acquired; all line printers
are in the same class.

1 NUTS AND BOLTS

We will assume that when a process needs a resource, it will ask the kernel for it by mak-
ing a service call. The part of the kernel responsible for these requests is theresource
manager. The same service call might ask for several resources at a time. If the
resources desired are available and the resource manager decides to grant them, the pro-
cess is allowed to continue. The fact that the process now possesses the resources is
marked in its context block, and the resources are marked as belonging to that process.

The resource manager might decide not to grant the resources. In this case, the
process is placed in a resource-wait list, where it remains until the resource manager
decides to honor it with the resources. (Instead, the resource manager could report
failure immediately or after a delay.)

When the process has finished using one or more resources, it returns them by issu-
ing another service call. This call does not block the process, although the scheduler may
take this opportunity to switch to a different process for a while. If a process tries to use
a resource it has not acquired, the resource manager treats this action as an error.

Here is a sample of the declarations needed for these service calls:

122 Resource Deadlock Chapter 4

1 type
2 ResourceClass = (Tape, Printer, ...); { generic name of resource }
3 ResourceIdentifier = integer; { specific name of resource }
4 ResourceDescriptor =
5 record
6 Kind : ResourceClass; { set by process }
7 Which : ResourceIdentifier; { set by resource manager }
8 end;
9 Resources = list of ResourceDescriptor;

The service calls we provide might have the following form.

� GetResource(request). The request is of type Resources, with only the Kind
field set. If a process wants, for example, three tapes and a printer, it makes a
request with a Resources list containing four resource descriptors. When this call
returns to the calling process (perhaps after a delay), the Request list has been
updated by the resource manager to indicate which resources have been granted.

� ReleaseResource(request). Again, request is of type Resources. The resource
manager reclaims the resources listed.

The standard scenario for a process that wishes to use some resources is as follows:
GetResource(Request); { may block }
Use(resource); { must terminate eventually }
ReleaseResource(Request);

If processA requests three tapes and a printer and the installation has five tapes
and five printers, the resource manager will choose from these to give toA. When A
later decides to write information to the tape, it might submit a service call that looks like
this:

Write(tape,info);

where ‘‘info’’ is the data to be written, and ‘‘tape’’ is of type ResourceDescriptor and
describes which tape drive to use. The Write call will fail if the tape has not been allo-
cated to processA. (We will discuss transput service calls in Chapter 5.) Likewise,
ReleaseResource will fail ifA tries to release a resource that has not been allocated.

If a process terminates before it has released all its resources, the resource manager
pretends that it has released them properly. This pretense is not as bad as preemption,
because the terminating process cannot be hurt by taking away its resources. However,
the resources may not be in a consistent state. The resource manager could just trust
processes to leave resources in the right condition. For example, a tape drive should be
rewound. It is better for the resource manager to handle thisfinalization part of the
release operation itself, whether release was performed explicitly by the process or impli-
citly by the termination of the process. But the internal consistency of some resources,
like files, cannot be enforced by the resource manager because it does not know how the
file is interpreted by the processes that use it. The concept ofatomic transactions, dis-
cussed in Chapter 6, can be applied to achieve proper finalization even in the case of
files.

Nuts and bolts 123

2 DEADLOCK AND STARVATION

At first glance, resource allocation seems trivial. It seems that we don’t need any policy
at all. If the resource is available, grant it; if not, block the process until the resource is
released by whoever has it. This approach is the mostliberal method imaginable.

The problem with this approach is that it can get stuck. The simplest scenario that
fails has two processes,A and B. Both A andB will eventually want two tape drives,
and the operating system has exactly two drives. However, since neitherA nor B needs
both tape drives to start out with, they ask for the drives one at a time, even though they
could have asked for both at once. Here is the scenario that runs into trouble:

A requests one tape drive.
The resource manager grants tape drive 1 to A.
B requests one tape drive.
The resource manager grants tape drive 2 to B.
A requests another tape drive.
The resource manager blocks A, since no drives are available.
B requests another tape drive.
The resource manager blocks B, since no drives are available.

BothA andB are stuck: Each is waiting for a resource that is held by the other. This sort
of circular waiting is calleddeadlock. In Europe, it is known by the more striking name
‘‘deadly embrace.’’

Figure 4.1 is aresource graph that shows processes and resources. We draw an
arrow from a process (likeA) to a resource it is waiting for (like tape 2). Similarly, we
draw an arrow from a resource (like tape 2) to a process that currently is using it, if any
(like B). We see that this resource graph has a cycle. In general, deadlock is a situation
in which the resource graph has a cycle. (We will return to resource graphs later and
generalize this principle.)

The only way to break a deadlock is by preempting a resource, which, as we have
seen, can injure both the process and the resource. It is far better to avoid deadlock in the

tape 1 tape 2

B

A

Figure 4.1 A deadlocked resource graph

124 Resource Deadlock Chapter 4

first place, as a less liberal policy might:
1 A requests one tape drive.
2 The resource manager grants tape drive 1 to A.
3 B requests one tape drive.
4 The resource manager blocks B, applying some clever policy.
5 A requests another tape drive.
6 The resource manager grants tape drive 2 to A.
7 A returns tape drive 1.
8 The resource manager grants tape drive 1 to B.
9 B requests one tape drive.
10 The resource manager blocks B, since no drives are available.
11 A returns tape drive 2.
12 The resource manager grants tape drive 2 to B.
13 B returns tape drive 2.
14 B returns tape drive 1.

Figure 4.2 shows the resource graph at three points in this scenario. After line 6,B is
waiting for either tape drive, so we have shown two arrows fromB. However, there is no
cycle in the graph. At the end, bothA andB can successfully terminate.

Deadlock can exist among more than two processes. For example, we could
accidentally get into the following state:

��������������������������

Process Has Wants��������������������������
A tape printer
B printer plotter
C plotter tape���������������������������

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

This situation is shown in the resource graph of Figure 4.3. The essence of a deadlock is
the existence of a cycle of processes, each of which is waiting for something held by the
next process in the cycle. Our first example had a cycle of two processes. This second
example has three.

Deadlock is an obvious problem when it happens; all the processes in the deadlock
stop making any progress, even though other processes might continue unaffected. The
way to prevent deadlock is for the resource manager sometimes to deny a resource when

tape 1 tape 2

B

A

tape 1 tape 2

B

A A

B

tape 2tape 1

after line 6 after line 10 after line 12

Figure 4.2 Avoiding deadlock

Deadlock and starvation 125

A

BC

plotter

printertape

Figure 4.3 Three-way deadlock

a process requests it and to block the process instead, even though the resource is avail-
able. Policies that deny resources even when they are available areconservative, as
opposed to the liberal policy shown earlier.

Another way to picture deadlock is to draw aprogress diagram such as the one
shown in Figure 4.4. In this diagram, the two dimensions refer to virtual time in
processesA and B. ProcessA requires a tape drive during part of its execution and a
printer during another part. Likewise, processB requires both tape drive and printer. Let
us assume that there is only one tape drive and one printer. The dashed path through the
diagram shows how the processes might be scheduled. When processA is running, the
path heads to the right. WhenB is running, the path heads upwards. If we have only one
processor, there are no other possible directions for the path. The shaded regions are for-
bidden because of resource conflicts. The region on the left must be skirted, because
there is only one tape, and both processes need it in that region. The region on the right
may not be entered because of conflict for the only printer.

The dots in the diagram are placed at important times in the execution of these
processes. At point 1, processB acquires the printer. At point 2, it also gets the tape. It
releases the printer at point 3 and the tape at point 4. ProcessA gets the tape at point 5
and the printer at point 6. It releases them at points 7 and 8.

This picture shows a safe path through the obstacle course. There is a dangerous
turn, however, between points 1 and 2. If the path had continued to the right instead of
heading upward, it would not immediately enter a forbidden region. However, since the
path may never head down or left, it would have inevitably reached an obstacle that
could not be surmounted. Virtual time would have to stop for both processes. They
would be deadlocked. To avoid deadlock, the path must avoid the unsafe (but otherwise
permissible) region in whichA has a tape andB has a printer. We will see how various
methods achieve this goal.

The most conservative approach of all is calledserialization, in which processes
are not allowed to have resources concurrently at all. Serialization in our two-tape exam-
ple would result in the following scenario:

126 Resource Deadlock Chapter 4

876

5
4

3
2

1

process B

process A

tape

printer

printer

tape

Figure 4.4 Progress diagram

1 A requests one tape drive.
2 The resource manager grants tape drive 1 to A.
3 B requests one tape drive.
4 The resource manager blocks B, since A has a resource.
5 A requests another tape drive.
6 The resource manager grants tape drive 2 to A.
7 A returns tape drive 1.
8 A returns tape drive 2.
9 The resource manager grants tape drive 1 to B.
10 B requests one tape drive.
11 The resource manager grants tape drive 2 to B.
12 B returns tape drive 2.
13 B returns tape drive 1.

Serialization works because all waiting processes are waiting for the same running pro-
cess to release resources. The running process never waits for resources, so there can be
no cycle. We would like to avoid serialization when we can because reduced con-
currency means reduced throughput. The process that has resources and is running might
be blocked for a while in a transput-wait list. During that time no other processes would
run, because they are all in a resource-wait list.

Even if deadlock is avoided, a more subtle problem remains. If a process is
blocked even when resources are available, it might never be allowed to run again. We
call this dangerstarvation. Starvation arises from consistently awarding resources to the
competitors of a blocked process. As long as one competitor has the resources, the
blocked process cannot continue. Increased conservatism is needed to prevent this prob-
lem.

The spectrum from liberal to conservative is shown in Figure 4.5. Policies that are
too liberal are subject to deadlock. Those that are too conservative reduce concurrency.

Deadlock and starvation 127

advance-claim never grant

hierarchical

one-shotgrant if available

liberal

serializationexpensive
very

deadlock
possible without foreknowledge

prevent deadlock
avoid deadlock

conservative

with
foreknowledge

Figure 4.5 The liberal-conservative spectrum

Our goal is to achieve the most liberal resource-allocation policy we can without
encountering deadlock. Serialization avoids deadlock but is very conservative. Figure
4.5 also shows the resource-allocation policies we will examine. The one-shot, hierarchi-
cal, and advance-claim algorithms put increasingly less onerous restrictions on the
processes that wish to request resources. The advance-claim algorithm also requires a
certain amount of prior knowledge about the resources required by each process. The
more information of this nature we know, the closer we can approach our goal. How-
ever, the algorithms that make use of such knowledge are increasingly expensive to exe-
cute.

Before we turn to these other algorithms, we will introduce a particularly instruc-
tive example of resource allocation.

3 DINING PHILOSOPHERS

The classical ‘‘Dining philosophers’’ problem demonstrates both deadlock and starvation
issues.

Dining philosophers problem

Five philosophers are seated around a circular table. Between each pair of ad-
jacent philosophers is a chopstick, so there are five chopsticks all together. In
front of each philosopher is a bowl of rice. It takes two chopsticks to eat rice,
so a philosopher needs to grab both the chopstick to the left and the one to the
right in order to start eating. While philosophern is eating, neither neighbor,
that is, neither philosophern +1 nor n −1, can be eating, because both need a
chopstick that is in use by philosophern . Each philosopher thinks for a while,
then decides to eat, gets the chopsticks needed, eats, and puts the chopsticks
down again, in an endless cycle. The challenge is to grant requests for chopst-
icks while avoiding deadlock and starvation.

128 Resource Deadlock Chapter 4

Figure 4.6 shows each philosopher as a process and each chopstick as a resource.
Each philosopher executes the following program.

1 procedure Philosopher(Which : 0..4);
2 var
3 LeftChopstick, RightChopstick : ResourceDescriptor;
4 begin
5 { initialize Chopstick resource variables }
6 LeftChopstick.Kind := Chopstick(Which);
7 RightChopstick.Kind := Chopstick((Which+1) mod 5);
8 loop { think — eat loop }
9 Think; { occupy some finite amount of time in thought. }
10 GetResource(LeftChopstick);
11 GetResource(RightChopstick);
12 Eat; { for a finite amount of time }
13 ReleaseResource(LeftChopstick);
14 ReleaseResource(RightChopstick);
15 end; { think — eat loop }
16 end Philosopher;

Deadlock can occur if every philosopher tries to get chopsticks at once and each gets as
far as line 11. Each has asked for a left chopstick, and the allocator might grant all these
requests. Now every philosopher is stuck at line 11, because each right chopstick is
someone else’s left chopstick; thus each is in use. Figure 4.7 shows the resource graph in
this situation. A clever allocation policy might have prevented this disaster by keeping
one chopstick free, which would have been more conservative.

The dining philosophers are also subject to starvation. Let’s say that philosophers
2 and 4 are currently eating. Philosophers 1 and 5 are engaged in thinking great thoughts
and will not be eating for a long time. Now philosopher 3 requests both chopsticks (one
at a time or both together). Philosopher 3 is blocked, since the chopsticks are held by
philosopher 2 and philosopher 4. Figure 4.8 shows the resource graph. Later,

43

52

1

Figure 4.6 Dining philosophers

Dining philosophers 129

43

52

1

Figure 4.7 Deadlocked philosophers

43

52

1

Figure 4.8 Philosopher 3 starves

philosopher 2 finishes eating. Instead of granting 2’s right chopstick as 3’s left chopstick,
which we have seen can lead to deadlock, let’s let the resource manager be more conser-
vative and leave that chopstick free. Later, philosopher 2 wants to eat again. Since phi-
losopher 1 is engrossed in thought and oblivious to the real world, the resource manager
gives philosopher 2 two chopsticks, leading again to the situation in Figure 4.8. Then
philosopher 4 finishes eating. Again the resource manager decides not to grant philoso-
pher 4’s left chopstick to philosopher 3, because deadlock could result. Philosophers 2
and 4 keep eating whenever they want, but poor philosopher 3, although no doubt quite

130 Resource Deadlock Chapter 4

clever, starves to death.
The problem, then, is to follow a strategy that is not so liberal that it leads to

deadlock or starvation, but not so conservative that it serializes, because serialization is a
waste of resources.

4 ONE-SHOT ALLOCATION

To prevent deadlock, we only need to ensure that a cycle of waiting can never build up.
One way to avoid a cycle is to partition all processes into two kinds: those that have all
the resources they will ever need and those that have none at all. Processes in the first
group are not blocked. Processes in the second group are blocked waiting for resources
held by the first group. Therefore, no cycle of waiters can exist. This line of reasoning
leads toone-shot allocation, which requires each process to acquire all its resources at
once. The process is blocked until the request can be satisfied. Any attempt to request
resources after the first time is an error.

In its pure form, the one-shot method requires each process to acquire all its
needed resources at one time and never request resources again. Under this rule, each
philosopher would request both chopsticks at the outset and never return them. Only two
philosophers would ever eat; the other three would starve.

A more liberal form of one-shot allocation follows this rule:

��

One-shot allocation��

A process may request resources only when it has none at all.���
�
�
�

�
�
�
�

A process may repeatedly acquire a number of resources, use them, return them all, and
then later acquire a new set. To follow this policy, the philosophers should ask for both
chopsticks at once. A resource manager that employs the one-shot policy should be care-
ful to block any philosopher that cannot get both chopsticks at once. It must never grant
requests partially (like allocating one of the two chopsticks requested by a philosopher),
because such an allocation is equivalent to letting the philosopher make two requests.

Now if all the philosophers ask for chopsticks at the same time, the resource
manager will grant one philosopher, say number 1, two chopsticks. Philosophers 2 and 5
cannot be satisfied at the moment, so they are given no chopsticks at all. Philosophers 3
and 4 are still candidates for resources; say the resource manager gives 3 two chopsticks.
Now 4 must also be blocked. There is no deadlock, since there is no cycle in the graph,
as shown in Figure 4.9. This allocation strategy has prevented deadlock, but it does not
address starvation.

Our earlier situation in which processesA and B each need two tapes is also
solved, since the one-shot method will enforce serialization.

However, one-shot allocation is too conservative to be practical. A process that
will eventually need many resources will have to acquire them all at once and thus
prevent other processes from using the resources, even though the process that holds

One-shot allocation 131

43

52

1

Figure 4.9 One-shot allocation

them is not yet using them. Furthermore, a process may not know all the resources it will
eventually need.

5 HIERARCHICAL ALLOCATION

Another way to prevent a cycle is to associate some number with each process and
somehow make sure that numbers only increase as we follow any chain of waiting
processes. There clearly can’t be a cycle of processes, each of which has a higher
number than the previous one.

That is the theory, but how can it be made practical? First, give each resource
class a ‘‘level’’ number. For example, tape drives can have level 1, plotters 2, and
printers 3. The numbers need not all be different. We will associate each process with
the number of the highest level resource it currently holds. To make sure the numbers
increase on any chain of waiting processes, we impose the following rule.

���

Hierarchical allocation���

A process may request resources only at a higher level
than any resource it currently holds.���

�
�
�
�

��
�
�
�
�

For example, if processA has a tape drive and a plotter, it can ask for two printers, but it
may not request another tape drive or another three plotters. A process that only has a
tape drive may ask for both plotters and printers but not for another tape drive. This rule

132 Resource Deadlock Chapter 4

is not so severe as the one-shot rule.
The hierarchical allocation rule solves the deadlock problem. To see why, let’s say

that there is a deadlock. We can show that some process must have broken the rules.
Pick any member of the deadlock and call it processA. It must be blocked while waiting
for some resource. That resource is at some level, saya. Some processB has that
resource and is waiting for another resource. SinceB already has a resource at levela,
the one it is waiting for must be at a higher level, sayb. This argument continues around
the cycle until we find that processA must be holding a resource at levelz , wherez > a .
But thenA has broken the rules, because it is asking for a resource at levela. If A hasn’t
broken the rules, then somewhere else along the cycle a mistake was made. To enforce a
hierarchical allocation, the resource manager should return an error indication instead of
granting a resource when a process breaks the rule.

In our scenario of Figure 4.1, neither process has followed the hierarchical rule,
since both have requested a tape drive after they already have one. Each should request
both drives simultaneously. If they had followed the rule, they would not have encoun-
tered a deadlock. If we wish, we can distinguish the two tape drives and put them at dif-
ferent levels. Then bothA and B must ask for the lower-level tape drive before the
higher-level one. The second process to ask for its lower-level tape drive will be
blocked. Again, deadlock is avoided.

The hierarchical strategy also protects the dining philosophers from deadlock. If
all chopsticks are at the same level, the philosophers must ask for both chopsticks at
once, which we have already seen prevents deadlocks. If each chopstick is at a different
level, each philosopher must always ask for the chopsticks in the proper order. It cannot
happen that the proper order for every philosopher is to ask first for the left chopstick and
then for the right chopstick.

Unfortunately, the hierarchical strategy is still fairly conservative. Processes must
ask for low-level resources long before they are really needed because after higher-level
resources have been acquired, it is no longer possible to get low-level resources without
giving the high-level ones back. Since resources are acquired in this artificial order,
some processes are blocked for resources they don’t need yet but must acquire now.
Other processes are blocked for resources they need but are being held by another pro-
cess that does not need them yet. In the extreme case in which all resources are at the
same level, hierarchical allocation reduces to the one-shot technique.

When hierarchical allocation is used, the scarcest resources are usually given the
highest levels. Requests for them will therefore be made only when they are actually
needed by a process.

6 ADVANCE-CLAIM ALGORITHM

The advance-claim algorithm moves us closer to our goal of liberalism without deadlock
by requiring extra information in advance. Consider a banker with an initial amount of
cash with which to grant loans and customers who wish to take loans and later repay
them. Customers often request additional loans before they can pay back anything. The
banker must be conservative enough to avoid deadlocks among the customers but wishes

Advance-claim algorithm 133

to be liberal enough to make as many loans as possible.
We will require that each process make aclaim before it acquires any resources.

This claim indicates the greatest number of each resource class it will need at any one
time. This claim allows the resource manager to foresee and prevent dangerous situa-
tions. The claim can be presented as a service call:

� Claim(resources). This call returns an error if the process already holds
resources. It sets an upper limit on the number of resources the process may later
use at one time. The resources argument may list several classes of resources.

A process is constrained by its claim; if it ever makes a request that, if satisfied,
would cause the process to hold more of some resource class than its initial claim, the
request is rejected. The sum of all the claims made by all the processes can be much
larger than the total amount of resources available. However, no one process may claim
more than the total number of physical resources because there would be a danger that
this process could then legally request more than can be granted, and the process would
not be able to continue.

The resource manager records the currentallocation state for each resource class.
For simplicity, we will assume that there is only one resource class, like tape drives. The
current allocation state can be declared as follows:

1 type
2 ProcessResourceState =
3 record
4 Claim : integer;
5 Held : integer;
6 Request : integer; { if not zero, the process
7 is blocked waiting for this many more }
8 end;
9 AllocationState =
10 record
11 array 1:NumberOfProcesses of ProcessResourceState;
12 Free : integer; { unallocated resources }
13 end;

An allocation state is calledrealizable if it makes sense — that is, if the following condi-
tions prevail:
(1) No one claim is for more than the total resources available.
(2) No process is holding more than its claim.
(3) The sum of all the Held fields is not more than the total resources available.

Otherwise, the state is calledunrealizable. The resource manager ensures that unrealiz-
able states are never entered. Each claim is checked against the total resources, and each
request is checked against the associated claim.

A realizable state is safe if it cannot possibly lead to a deadlock. Formally, a state
is safe if there is a sequence of processes, called asafe sequence, such that these three
conditions are met:
(1) The first process in the sequence can certainly finish, because even if it should

request all the resources its claim allows, there are enough free resources to
satisfy this request.

(2) The second process in the sequence can finish if the first finishes and releases
everything it now has, because adding what the first has to the free resources can
satisfy the entire claim of the second process.

134 Resource Deadlock Chapter 4

(3) Theith process can finish if all the previous processes do, because the sum of all
their resources and the currently free resources can satisfy the entire claim of the
ith process.

Informally, the state is safe because at the worst, we can avoid deadlock by blocking all
new requests except those made by the first process. When it finishes we will allow only
the second to continue, and so forth. One hopes, of course, that such serialization will
not be necessary.

Here is an example.

��������������������������������

Process Holding Claims��������������������������������
A 4 6
B 2 7
C �

�
�
�
�
�

4 11��������������������������������

Unallocated 2���������������������������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

A can certainly finish, because the 2 unallocated resources can be granted to it if neces-
sary to bring its holdings to the 6 that it claims. When it finishes, it will release all 6
resources. We could then certainly finishB by applying 5 of those resources to bring its
holdings up to its claim of 7. When it terminates, it will release all 7, giving us 8 unallo-
cated resources. Those resources suffice to finishC. We have shown that {A, B, C} is a
safe sequence, so the current state is safe. However, a very similar allocation state is
unsafe:

��������������������������������

Process Holding Claims��������������������������������

A 4 6
B 2 9
C �

�
�
�
�
�

4 11��������������������������������

Unallocated 2����������������������������������
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

A could finish as before, but we cannot guarantee that eitherB or C would finish because
after A’s termination, there are only 6 unallocated resources. We might be lucky,
though, andB might finish without requesting its full claim. So an unsafe state does not
necessarily have a deadlock.

Having established these concepts, we can define the advance-claim algorithm:

���

Advance-claim algorithm���

Never allocate a request if it causes the current
allocation state to become unsafe.��

�
�
�
�

�
�
�
�
�

This algorithm is often called thebanker’s algorithm.
At first, this criterion appears expensive to evaluate. Whenever a process makes a

new request, the resource manager must find a safe sequence under the assumption that

Advance-claim algorithm 135

the request has been granted. There aren ! (n factorial, or
n × (n − 1) × (n − 2) × . . . × 2 × 1) sequences ofn processes, all of which would be
tried before the state is pronounced unsafe. However, this cost can be reduced to work
proportional ton 2. If the state is safe and if some processA can finish given the
currently available resources, there is a safe sequence that starts withA. We do not miss
the only solutions by starting with a reasonable-looking first element. The O(n 2) algo-
rithm (the ‘‘O’’ means ‘‘order of’’) looks roughly like this:

1 S := [all the processes];
2 while S <> [] do
3 find A, an element of S that can finish
4 if impossible, fail: the state is unsafe
5 remove A from S, add A’s resources to the unallocated pool
6 end;
7 succeed: the state is safe.

The resource manager need not allocate resources to requesting processes according to
the order of the safe sequence. It may allocate resources in the order of requests as long
as there exists some safe sequence after each request is satisfied.

The advance-claim algorithm can be applied with a still cheaper algorithm
developed by Habermann. The resource manager maintains an array S[0..r −1] of
integers, wherer is the number of copies of the resource. For simplicity, we assume that
there is only one resource class. Initially, S[i] = r − i for all 0 ≤ i < r . If a process with
a claim ofc holdsh units and requests 1 more, decrement S[i] for all 0 ≤ i < c −h . If
any S[i] becomes negative, the new state is unsafe.

As an example, we return to the safe state shown above. To find the current values
of S, we will assume thatA, B, andC each started with no resources, then asked for their
current holdings one by one. We will mark each decrement by×.

���

Index 0 1 2 3 4 5 6 7 8 9 10 11���

Original S 12 11 10 9 8 7 6 5 4 3 2 1���
A × × × × × ×
A × × × × ×
A × × × ×
A × × ×���

B × × × × × × ×
B × × × × × ×���

C × × × × × × × × × × ×
C × × × × × × × × × ×
C × × × × × × × × ×
C × × × × × × × ×��

Final S 2 1 0 0 0 0 1 1 1 1 1 1���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

The current state is safe. If we grantA one more resource, we would decrement S[0] and
S[1], which does not make those entries negative. Therefore it would be safe to grantA
another resource. But grantingB one more resource would decrement S[0] through S[4],
three of which would become negative. That state would be unsafe.

To see why this strange method works, let us see what the first column, S[0],
represents. Before any resources are granted, S[0] is equal tor , the number of resources.

136 Resource Deadlock Chapter 4

Every time a resource is granted, the process that requested it must have had a claim
higher than the number of resources granted so far, so× will be placed in at least the S[0]
column, if not in others. Therefore, the current value of S[0] is the number of available
resources, since we subtract one for each× in the column. If S[0] < 0, the state is not
only unsafe, it is also unrealizable, since more resources have been granted than exist.

Next, let us see what happens if a process, sayD, claims the entire set of resources
and then acquires them all. We can see how S is calculated for r = 4:

�������������������������������

Index 0 1 2 3�������������������������������

Original S 4 3 2 1�������������������������������
D × × × ×
D × × ×
D × ×
D ×��

Final S 0 0 0 0��������������������������������
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

A process that acquires its entire claim makes a triangular ‘‘footprint’’ of× marks in our
picture. In the case in which the initial claim is the entire set of resources, the footprint is
large enough to reduce every entry in S to 0. When a process has received its entire
claim, the footprint is complete and makes a triangle.

Now let us say that one or more entries of S have become−1. For concreteness, let
us say that S[3] is the leftmost column with an entry of−1. What is the largest possible
value for S[0], S[1], and S[2]? S[2] cannot be greater than 0 — that is, one larger than
S[3] — since every× in column 3 is in a line that also puts× in column 2, and column 2
starts only 1 larger than column 3. S[2] cannot be negative, since column 3 was the first
with a negative value. So S[2] must be 0. Similar reasoning shows that S[1] is either 0
or 1, and S[0] is 0, 1, or 2.

Since S[2] = 0 and S[3] =−1, there cannot be any line of exactly three× marks.
Such a line would have× in column 2 but not in column 3 and therefore would have
decreased S[2] more than S[3], so S[2] would have to be less than 0. Therefore, no foot-
print has a line with exactly three× marks. All footprints are either large and incomplete,
with their last row having at least four× marks, or they are small, with their first row hav-
ing at most two× marks. All the small footprints can finish. They belong to processes
that form the start of a safe sequence. (There are at most two such processes, one with a
claim of 2 and only one line of footprint and one with a claim of 1 and one line of foot-
print.) After these processes have terminated, S[0] will be 2 and S[1] will be 1. Only
processes with large incomplete footprints are left. Not a single one of them can finish,
because each has at least three lines of footprint to complete, so S[0] must be at least 3.
But S[0] is only 2. Therefore, there is no safe sequence. This argument does not depend
on the fact that we chose column 3 as the first with a negative value.

We have been assuming throughout that there is only one resource class. The
situation becomes more complicated if there are several resource classes. It is not
enough to find a safe sequence for each resource class independently; a sequence must be
found that is safe with respect to each resource class.

The advance-claim algorithm is conservative insofar as it cautiously avoids enter-
ing an unsafe state even if this unsafe state has no deadlock. However, it achieves the

Advance-claim algorithm 137

most liberal policy that is guaranteed not to deadlock. One cost of this achievement is
the requirement that processes enter claims, which may be unnatural. For example, a
process that needs to modify a number of files needs to exclude other processes, but it
might not know which files must be modified until it has read a significant amount of data
from many files. A second cost of the advance-claim algorithm is the time and space
needed for finding a safe sequence.

More complex methods exist that lead still closer to our goal. They require still
more prior information about what the processes will need. For example, if we know the
exact order in which each process will request and release resources, we can organize a
more liberal schedule. The necessary calculation, however, is quite time-consuming.

7 DEADLOCK DETECTION

The methods described so far canbe characterized aspolicies fordeadlock prevention.
If, however, we are willing to allow deadlocks, we must be able to discover them when
they occur. We call this strategydeadlock detection. A method similar to the advance-
claim algorithm can be used to check fora deadlock-free sequencewhen the current allo-
cation state is unsafe. We say that a state isdeadlock-free if there is a sequence of
processes, called adeadlock-free sequence, such that the following three conditions are
met.
(1) The first process in the sequence might finish because there are enough free

resources to fulfill its current outstanding request (what it has actually asked for)
even if there are not enough to satisfy its entire claim (what it may potentially ask
for).

(2) The second process in the sequence might finish if the first finishes and releases
everything it now has, because adding what the first has to the free resources can
satisfy the entire outstanding request of the second process.

(3) The ith process might finish if all the previous processes do because the sum of
all their resources and the currently free resources can satisfy the entire outstand-
ing request of theith process.

A deadlock-free state has nocurrent deadlock because the chain of waiting processes is
not cyclic. However, if it is unsafe, an unlucky set of requests can turn it into a
deadlocked state. Let us continue the previous unsafe example, adding a column for the
outstanding request, that is, the request that has been made that we have not yet decided
to honor. (We are either at the point of deciding whether to honor it or we have placed
the requesting process in a resource-wait list.) We no longer need the Claims column,
since we are not using the advance-claim algorithm.

138 Resource Deadlock Chapter 4

��

Process Holding Outstanding request��

A 4 2
B 2 6
C �

�
�
�
�
�

4 7��
Unallocated 2���
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

As we saw before, this state could be unsafe (given the claims). However, {A, B, C} is a
deadlock-free sequence,so there is no deadlock yet. Again, a slight change can make a
big difference. IfB should ask for one more resource, this is what we have:

��

Process Holding Outstanding request��
A 4 2
B 2 7
C �

�
�
�
�
�

4 7��

Unallocated 2���
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Now A might finish, yielding 6 free resources, but there is no way to satisfy eitherB or
C, both of which need 7. ProcessesB andC are deadlocked, butA is not.

Deadlock can be detected in such cases by building the resource graph and looking
for cycles. If one resource class has several equivalent members (like tape drives, which
might be functionally identical), the simple resource graphs must be improved slightly.
We cluster all resources from one class into the same node of the graph. An arrow goes
from any process waiting for a resource to the class node for that resource. If a process is
waiting for several resources, we draw an arrow from the process to each of the appropri-
ate class nodes. An arrow goes from a class node to any process using one of its
resources.

A deadlock is no longer signaled by a simple cycle. For example, the generalized
resource graph of Figure 4.10 is an extension of Figure 4.1. There are three tape drives

tapes

A

C

B

Figure 4.10 A deadlock-free generalized resource graph

Deadlock detection 139

and three processes. Each ofA, B, andC has one tape drive.A andB are waiting for a
second tape drive. The same cycle we saw in Figure 4.1 is present (passing throughA,
the tapes,B, and the tapes), but there is no deadlock.C may well finish its work and
release its tape drive. Then eitherA or B can get it, finish, and let the other finish as well.

In generalized resource graphs, we look for knots, which generalize cycles in ordi-
nary resource graphs. Aknot is a set of vertices (including processes and resources)
such that starting at any vertex of the knot, paths lead toall the vertices in the knot and to
no vertices outside the knot. In our example, paths leading fromA, B, or the tapes lead
to C, but no path at all leads fromC. Therefore, this graph has no knots and no deadlock.

If we enlarge the example we can build a deadlock, as shown in Figure 4.11. Now
C is waiting for a printer, but both printers are allocated. This graph contains a knot,
namely, all the vertices except forD. All the processes in the knot are deadlocked. Ter-
minating any one of them will break the deadlock. For example, if we terminateC, one
tape is released. EitherA or B can then proceed. (Until we allocate that tape to eitherA
or B, we ignore the knot, because it involves a resource that is not fully allocated.)

One way the resource manager can detect a knot, and therefore a deadlock, is to try
to reduce the generalized resource graph. If it can’t reduce the graph completely, there
is a knot. To reduce the graph, we remove any process that is not waiting for any
resources and any process that is waiting only for resource classes that are not fully allo-
cated. These processes are not contributing to any deadlock; there is some chance they
will finish and return their resources. As we remove these processes from the graph, we
also remove any arrows pointing to them from resources in order to indicate that those
resources are given back. This action may turn resources that were fully allocated before
into partially allocated resources, thereby allowing us to remove more processes. If we
can remove all the processes, there is no knot and no deadlock.

In Figure 4.10, we would first removeC, since it is not waiting. Then the tapes
resource is no longer fully allocated, so bothA andB can be removed. In Figure 4.11,
however, no processes can be removed, so there is a deadlock.

The onset of deadlock is always at the time a process makes a request and is
blocked waiting for a resource. A resource manager that depends on deadlock detection

Dtapes

A

C

B

printers

Figure 4.11 A deadlocked resource graph

140 Resource Deadlock Chapter 4

needs to check for deadlock only at this time. A reasonable alternative, taken by VMS, is
to start a timer for 10 seconds (or however long is specified by the deadlock-wait param-
eter) whenever a request blocks. If the request is still blocked when the timer expires, an
attempt is made to detect deadlock. The goal of the attempt is to remove the blocked
process that triggered the detection episode from the resource graph. If that process can
be removed, it is not necessary to continue and remove the others; there is no deadlock
involving that process.

8 DEADLOCK RECOVERY

When a deadlock occurs, one of the processes participating in the deadlock must be ter-
minated for the good of the community. A policy that chooses a victim process is called
a method ofdeadlock recovery. Terminating a process might injure data, as we have
seen. A process currently modifying shared data should be able to warn the resource
manager not to terminate it to recover from deadlock. If data consistency presents no
problems, the terminated victim might be restarted later. The designers of database
management packages have developed very sophisticated mechanisms to allow database
transactions to be aborted in such a way that restart is always possible. We will discuss
some of those mechanisms in Chapter 6.

To select a victim process, the resource manager could take into account the exter-
nal priority of the process and how expensive it will be to restart it. One good measure is
the amount of computation the process has already performed. The larger this amount,
the more expensive it is to restart the process and get it to its present state. Also, one
would hope that processes that have consumed large amounts of computation are almost
finished.

9 STARVATION

Our discussion has concentrated on deadlock, which is due to overly liberal policies for
allocation of resources. Starvation, in contrast, is the result of overly liberal policies for
reassigning resources once they are returned. When resources are freed, they can be
applied to any process waiting for them in the resource-wait list. (The short-term
scheduler should most likely not switch to the waiting process but should continue with
the releasing process, in accord with the Hysteresis Principle.) Not all policies for apply-
ing those resources prevent starvation.

For example, consider a situation with one resource class. A straightforward pol-
icy is to apply all released resources to the first-blocked process. However, the blocked
process may be the last in all possible safe sequences for the current allocation state. We
can’t unblock it, or the state becomes unsafe. We can’t apply the resources to other jobs
because they were not blocked first. Hence this policy does not work at all.

Starvation 141

We might allow other small requests to be satisfied meanwhile, in the hope that the
processes we favor in this way will eventually release enough resources to satisfy the
first-blocked process. More precisely, we might sort the resource-wait list by the order in
which processes block. When resources are freed, we scan this list and grant resources
only to processes whose current request can be fully satisfied. Unfortunately, thisfirst-fit
policy will starve the first-blocked process if there is a continuous stream of new jobs
with smaller requirements.

One way to modify this strategy is to allow partial allocation. As many units of the
resource are granted to the first process in the list as may be done safely; the rest may be
applied (if safe) to later processes in the list. Even this policy fails, because there are
situations in which no resources may safely be granted to the first blocked process, even
though others may continue.

Another modification is to order the resource-wait list according to some safe
sequence. (If there are several safe sequences, any one will do.) Resources are granted,
either partially or fully, starting at the head of this list. However, there is no way to
guarantee that any particular process will ever reach the start of this list. A process may
remain near the end of the safe sequence and never be allocated resources.

The starvation detection approach is modeled after deadlock detection. By the
time deadlock is detected, it is too late, but it is never too late to fix starvation. Starvation
might be signaled by a process remaining on the resource-wait list for too long, measured
in either time units or units of process completions.

Once starvation has been detected, new processes may be denied resources until
starving processes have completed. Of course, processes that already have resources
must be allowed to get more, since they may appear earlier on the safe sequence. This
approach is certain to work, but it must be tuned carefully. If starvation detection is too
sensitive, new processes are banned too often, with the result that there is an overall
decrease in throughput. In other words, the policy is too conservative. If detection is not
sensitive enough, however, processes can starve for a long time before they are finally
allowed to run.

Luckily, starvation is seldom a problem in actual operating systems, because non-
preemptable, serially reusable resources such as printers and tape drives tend to be
underused, and the existence of idle periods tends to prevent starvation.

10 PERSPECTIVE

Deadlock arises from dynamic resource sharing. If resources are not shared, there can
never be a deadlock. Deadlocks are especially dangerous in time-critical work. If the
operating system is used to run programs that control factory processes or pilot aircraft,
deadlock is unacceptable.

The danger of deadlocks is mitigated by several considerations. First, deadlocks
can often be avoided by proper design of the algorithms that share resources. For exam-
ple, different parts of the kernel may share information, like process context blocks.
Those parts will want exclusive access during the time they modify that information;
such access is like holding a resource. A hierarchical design inside the kernel is often

142 Resource Deadlock Chapter 4

used to make sure that no deadlocks arise from using these resources. We will return to
this point in Chapter 8, where we discuss mechanisms for achieving exclusive access.

Second, deadlock is an unacceptable situation only if everyone is infinitely patient.
In interactive environments, the resource manager need not recover from or even detect
deadlocks because the user will eventually get bored waiting for an answer and will
manually terminate the process.

The service call we described for requesting resources could be enhanced by
including a timeout parameter. If the resource manager cannot or will not honor the
request within the time specified by this parameter, it unblocks the calling process and
gives it a failure indication. The process could try again, try a different request, back out
of whatever action it is trying to perform, or terminate.

Some authors distinguish deadlock prevention from avoidance. Prevention
includes any method that negates one of the following three conditions that lead to
deadlock.

� Resources may not be shared. One can sometimes get the effect of sharing an oth-
erwise non-sharable device by buffering all output to that device (in parallel) and
then serializing the output of those buffers. Buffering can therefore be used as a
prevention method, but deadlock can still arise over the use of the buffers them-
selves.

� Resources may be requested while others are already being held. As we have seen,
the one-shot method prohibits such action, and is therefore a prevention method.
The hierarchical method prevents such requests within a level; by induction, it
prevents circular wait across levels as well.

� Resources may not be preempted. Under batch multiprogramming, some jobs may
allow cancellation and restarting. However, jobs that have made changes to files
are unlikely to be restartable.

Avoidance, on the other hand, includes methods like the banker’s algorithm that take
advantage of advance knowledge (such as maximum claims). That advance knowledge
allows them more freedom to navigate the progress diagram and still avoid dangerous
regions.

The conservative-liberal metaphor helps in rating various policies that we have
seen. Liberal policies have a greater potential for parallelism and throughput because
they allow more flexible navigation of the progress diagram, but they have an equal
potential for deadlock and starvation. The advance-claim algorithm provides a reason-
ably liberal method that is still conservative enough to prevent deadlock. To prevent
starvation as well, other conservative steps must be taken, such as banning new arrivals
or concentrating resources on particular processes. Overly conservative methods like
one-shot allocation remove all worries about deadlock and starvation, but the cost is
severe reduction of concurrency.

Although we have devoted a significant amount of attention to the advance-claim
algorithm, it is mostly interesting in the theoretical, not the practical, sense. As we
pointed out, many applications are unable to compute reasonable claims before they start
working; they only discover what they will need once they have made some progress.
Furthermore, resources can disappear suddenly if the hardware malfunctions. Therefore,
most operating systems don’t implement the advance-claim algorithm. It is much more
common to grant resources to processes following the most liberal policy imaginable. If
this policy leads to deadlock, the deadlock is detected (either by the resource manager or

Perspective 143

by disgruntled users) and broken by injuring some process. Hierarchical allocation has
also been used successfully, especially within the kernel to make sure that its modules
never become deadlocked.

11 FURTHER READING

A good mathematical treatment of deadlocks is given in Shaw’s textbook on operating
systems (1974). The problem of deadlock avoidance was formalized and analyzed
several years ago (Holt, 1972; Coffmanet al., 1971; Hebalkar, 1970; Shoshani and Coff-
man, 1970; Minoura, 1982). The advance-claim algorithm was first proposed by E.
Dijkstra (1968). A generalization of the binary safe-unsafe criterion to a measure of the
minimum number of resources needed for safety has been suggested by Madduri and
Finkel (1984). Starvation has also been called ‘‘effective deadlock’’ by Holt (1971),
who, along with others, has pointed out that partial allocation does not guarantee freedom
from starvation (Parnas and Habermann, 1972; Rossi and Fontao, 1981).

Starvation control has not been dealt with extensively. Holt suggested maintaining
periodically incremented counters for each blocked process (Holt, 1972). When a
counter exceeds a critical value the scheduler has to find a safe sequence and finish jobs
in that order. He also suggested partial allocations but required that resources not be
granted to jobs with zero holdings. The approach of banning new jobs was introduced by
Madduri and Finkel (1984). Another approach to starvation, which allocates resources
according to asafe-sequence order, isfound in the Boss 2 operating system for the
RC4000 computer (Lauesen, 1973).

12 EXERCISES

1. The service calls for allocating and releasing resources look suspiciously like the
calls for allocating and releasing segments. Is there any fundamental difference
between the two situations?

2. The service call for allocation of resources cannot specify ‘‘either one resource of
class 1 or one of class 2.’’ However, our dining philosophers might want to ask for
whichever chopstick is available first, then ask for the other one specifically.
(a) Why aren’t all the chopsticks in the same resource class?
(b) What could happen if we allow this sort of ‘‘selective resource allocation’’ and
use a liberal allocation policy?
(c) How well would selective allocation mesh with the hierarchical allocation pol-
icy?
(d) How well would selective allocation mesh with the advance-claim algorithm?

144 Resource Deadlock Chapter 4

3. What is a one-process deadlock? Why does this situation not cause any problems
to the resource manager?

4. Under the hierarchical resource allocation policy, suppose that a process is holding
a resource of level 3 and finds it needs to acquire a resource of level 2. Is there any
way it can do this?

5. Let’s number all the chopsticks in the dining philosophers problem and require that
each philosopher request an even-numbered chopstick before an odd-numbered
chopstick. Will this allocation strategy work? Is it a form of a well-known stra-
tegy?

6. Assume that there are two classes of resources. For the following resource-
allocation state, tell which, if any, of the processes are deadlocked.

��

1 2Process Holding Request Holding Request��

A 3 1 4 5
B 2 3 3 6
C 4 2 2 0��

Unallocated 2 3��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

7. Assume that there are two classes of resources. For the following resource-
allocation state, tell which, if any, of the processes are deadlocked.

��

1 2process Holding Request Holding Request��

A 3 7 4 5
B 2 3 3 6
C 4 2 2 0��

Unallocated 2 3��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�

8. Draw the resource graphs for the situations in exercises 6 and 7.

9. Construct an unsafe resource-allocation state in which there are three processes,
there is one class of resource with four resources, and each process has a claim of
three resources.

10. Construct an unsafe resource-allocation state in which there are three processes,
there is one class of resource with four resources, and each process has a claim of
two resources.

11. Which of the following events can lead from a safe state to an unsafe state? Which
can lead from a deadlock-freestate to a deadlocked state?
(a) A process makes a request within its claim.
(b) A process makes a request beyond its claim.
(c) A request within the claim is satisfied.

Exercises 145

(d) A process is blocked on a resource-wait list.
(e) A process releases a resource it had previously acquired.
(f) A process increases its claim.
(g) A process decreases its claim.
(h) A process terminates.
(i) A process is created and it makes its claim.

12. We have shown for Habermann’s method that if S[i] = −1 for somei , there is no
safe sequence. Show that if all S[i] ≥ 0 for all i , there is a safe sequence.

13. Show a situation in which there are several resource classes and for each class
there is a safe sequence but the situation is still unsafe.

14. Find a situation in which the first-fit starvation control policy fails.

15. Find a situation in which the first-fit starvation-control policy fails even when we
make partial allocations.

16. Why is testing the length of the resource-wait list an inadequate measure of starva-
tion?

17. Why don’t we measure the length of time on the resource-wait list in virtual time?

146 Resource Deadlock Chapter 4

chapter 5

TRANSPUT

Thus far we have treated operating systems as resource-allocation schemes, as suggested
by the Resource Principle. We will now turn to the view of operating systems suggested
by theBeautification Principle introduced in Chapter 1.

���

Beautification Principle���

An operating system is a set of algorithms that
hide the details of the hardware

and provide a more pleasant environment.��
�
�
�
�
�

�
�
�
�
�
�

From this point of view, storage management is not an attempt to allocate the main-store
resource but rather is meant to hide address translation and its implementation so that
processes can live in a more pleasant, virtual world. All a process needs to know for seg-
mentation is how to get and release segments.

Controlling transput is another way the kernel beautifies the process interface.
Computer devices (sometimes called‘‘peripherals’’) are oftenquite unpleasant to use
directly. Processes are interested in moving data between their virtual space and the dev-
ice. They are not interested in the peculiarities of line printers, for example. Nor do they
care to know that different brands and models of tape drive require completely different
controlling programs. In fact, they may not care to know whether output is being
directed to a tape drive, to a printer, or even to another process. All such details can be
hidden, in which case we say that transput istransparent with respect to brand, model,
or device type.

Just as processes enjoy the benefits of virtual store, they also enjoy the benefits of
virtual devices. These devices are simulated by the kernel, with data actually kept either
in main store or on other devices, typically large disks. For example, the VM operating
system has the concept of ‘‘minidisks,’’ which are meant to simulate small disks. They
are actually implemented by allocating cylinders on much larger disks. Another example

147

comes from spooling systems, in which printer output is actually sent to a disk to wait for
the printer to become available.

For the kernel to provide transparency and virtual devices, it must deal with physi-
cal devices without interference from processes. Therefore, all machine instructions that
might affect devices, such as a ‘‘Start transput’’ instruction, are disabled when the com-
puter is in non-privileged state. A process that uses such an instruction causes a trap to
the kernel, which treats this event either as an error in the process (invalid instruction) or
as a request for the kernel to provide transput services itself (service call).

In return for this monopoly over physical devices, the kernel provides service calls
for transput (such as reading a block from a tape) and device control (such as rewinding
the tape drive). The kernel usually attempts to schedule transput so that it overlaps with
computation, possibly blocking the requesting process until the transput completes. It
can also schedule competing transput requests from different processes so that they are
executed in an efficient order.

An amazingly large proportion of the instructions in the kernel, often 50 percent, is
devoted to device handling. Even though the subject has not been formalized very well,
the sheer bulk of transput program in kernels makes this subject vital to a study of operat-
ing systems. Our discussion will begin at the lowest level, the hardware, and will end at
the highest level of software. We will start by describing transput devices. Then we will
see thedevice interface, that is, the way devices are connected to the computer. We
then turn todevice drivers, which are kernel modules that interact with these devices.
Finally, we will discuss theprocess interface through which processes gain access to
transput services from the kernel.

1 DEVICE HARDWARE

A great number of devices have been designed for computers. Some, like disks and
drums, are used for backing and secondary store. (We usebacking store to hold
swapped-out parts of virtual store. We usesecondary store to hold files that are to be
kept after a process terminates.) Tapes are intended forarchival store — that is, to hold
large amounts of data that will not be needed for a long time. Tapes are also used for
temporary store when algorithms require enormous amounts of data and for transferring
large amounts of information between computer installations. Keyboards and video
displays, together called ‘‘terminals,’’ allow users to interact with their processes. Spe-
cial devices, like robot arms and television cameras, are used for real-time control. Com-
munication lines connect computers and peripherals.

We cannot hope to give a complete description in this book of all these devices.
Instead, we will present general principles and concentrate on just a few devices.

1.1 Disks

148 Transput Chapter 5

Disks are the most common devices for backing and secondary store. They come in a
wide variety of capacities, speeds, and prices, but all disks share some common charac-
teristics. Disks accept and provide data at a high rate (approximately 2 megabits per
second). Data are transferred to and from the disk in increments of oneblock, which is
typically between 256 and 1024 bytes. It is generally impossible to read or write less
than one block from or to a disk. If the operating system wishes to write out only a few
bytes without destroying the rest of the block, it must first read in the block, modify those
few bytes, and then write out the entire block.

The disk unit contains adisk pack, which is sometimes designed to be removable.
The disk pack physically resembles a stack of phonograph records, calledplatters.
Information is recorded magnetically, usually on both sides. All the platters rotate as one
unit, usually at 60 rotations per second. Each platter is divided into bands calledtracks.
There are typically on the order of 200 tracks per side on a disk pack, but some disks,
like the IBM 3380, have almost 900, and some newer Winchester disks, which have a
sealed head-disk assembly, have more than 1500. Unlike phonograph record grooves,
the tracks do not spiral toward the center but are concentric. Each track is divided into
sectors, each of which holds one block of information. There are about 30 sectors in a
track on a large disk pack. Figure 5.1 shows the layout of a disk.

Floppy disk drives are similar, but they accommodate only one platter, which can
be removed. Some only use one side of the platter. Floppies come in two standard sizes
(8 inches and 51⁄4 inches) and various densities. They rotate more slowly than conven-
tional disks. If their motors are allowed to run continually, both the motors and the
floppies wear out very quickly, so the motors are only turned on when a transfer needs to

read/write

heads
platters top view

Figure 5.1 Structure of a disk pack

Device hardware 149

be made. By the Hysteresis Principle, the motor is not turned off again immediately, but
is left on for a few seconds in the expectation that another transfer will be needed soon.

In addition to a block of data, a sector may also hold addressing information
(which sector it is), a bit that indicates whether the sector is usable (if one sector is dam-
aged, the rest of the disk pack maystill be usable), andsome error-checkinginformation
such as a checksum. (We will discuss checksums shortly.)

The operating system usually does not need to be aware of this extra sector infor-
mation, but it must know how the disk isformatted — that is, how many sectors there
are in a track and how many bytes may be stored in a sector. On many disk units, the
formatting is performed under software control when the disk pack is brought into ser-
vice. Formatting also discovers bad sectors and marks them. Extra tracks may be avail-
able to make up for bad parts of the disk. Some sophisticated disk controllers automati-
cally remap good sectors from these extra tracks onto sectors that were discovered to be
bad during formatting so that the operating system does not need to remember which sec-
tors to avoid.

The disk is only able to read or write from the track where the read/write head
currently sits. This head can move in and out when necessary to access other tracks; this
motion is calledseeking. It takes on the order of 20 to 40 milliseconds to complete a
seek. Of course, it takes longer to seek across many tracks than to seek across just a few.
After a disk has been in use for a while, a seek operation may fail to move to exactly the
right track. In this case, the software must ask the disk head to recalibrate itself by mov-
ing all the way out to a well-known position.

The read/write heads for all the disk surfaces are usually physically tied together so
they all access the same track number at the same time. This combination of similarly
located tracks on different surfaces is called acylinder.

Three types of delay, orlatency, affect how long it takes to read data from or write
data to the disk.Seek latency is the amount of time needed to seek to the desired
cylinder. Rotational latency is the amount of time needed for the desired sector to
arrive under the read/write head.Transfer latency is the amount of time needed for
those sectors with data to be completely scanned. (A single transput operation can
involve more than one contiguous sector.)

1.2 Magnetic tape

Magnetic tape has three major uses: archival store, data transfer between computers, and
intermediate storage of large amounts of data. Magnetic tape is the medium of choice for
archival storage of large amounts of data. Periodic backups of disk are typically made
onto tape, which can then be stored for long periods of time. Even though computer net-
works link many installations, massive amounts of data are still most economically
transmitted by magnetic tape. A tape written at one installation with one brand of tape
drive can usually be read at a different installation with a different brand of tape drive. In
fact, the two installations may have different operating systems and different brands of
computer. Such standardization makes it possible to transfer data practically anywhere
by tape. Many programs of importance in the business world take a large number of
input records, extract some data from each one, and then generate an output record.

150 Transput Chapter 5

Magnetic tape is often used for the input because it is relatively inexpensive and can be
read sequentially very quickly. Algorithms to sort massive sets of data generate large
intermediate results, which can also be stored on tape. Tapes created during one pass
over the data are read back in during the next pass.

Like disks, tapes store data by maintaining magnetic regions. There are typically
nine such regions across the width of the tape (hence the name ‘‘nine-track tape’’). A set
of nine bits is called aframe. Eight bits of the frame are used to store one byte of data,
and the ninth is aparity bit set to make the number of one bits in the frame an even
number. This redundancy is used to help detect errors on the tape. We will discuss par-
ity and other techniques for reliability shortly. Tapes are typically packed at densities of
1600 or 6250 frames per inch. The entire tape is written at the same density even though
some tape drives are capable of writing at either density. Frames are grouped into
records separated byinter-record gaps. The gap indicates the end of a record and gives
the tape drive room to speed up as it starts to read or write a record and to slow down
after it finishes. Magnetic tape is always read and written in entire records. A collection
of records constitutes afile. An inter-file gap, which is larger than an inter-record gap,
marks the end of a file. Figure 5.2 shows the layout of a magnetic tape.

Unlike disks, magnetic tapes are not formatted to have a particular record size.
Records may be of any convenient length, and successive records on the tape may have
different lengths. When the tape is read, adequate main store must be available to hold
an entire record at a time, regardless of its size. The use of larger records packs more
data on the tape, because there aren’t as many inter-record gaps. However, it requires
larger main-store buffers for transput. A typical record size is on the order of 2000 bytes.
Smaller virtual records can be packed together to gain the efficiency of larger physical
records.

tracks

inter-file gap

inter-record gap

filefile

record record record

Figure 5.2 Structure of magnetic tape

Device hardware 151

Many operating systems place an initial record on the tape that describes the tape,
including a serial number, owner, and other information. This record is called alabel.
Such tapes also have header and trailer records surrounding files to aid in identifying and
separating them.

Tapes can be read either forward or backward. When they read backward, the
buffer in main store is filled from the end to the start. The operating system (or applica-
tions programmer) must remember one essential rule about magnetic tape: Never write in
the middle of the tape. If the tape is positioned somewhere in the middle — that is, if
there are records ahead of the current position — then any write operation destroys those
records, because the new record written out will be followed by an inter-record gap.
Since the gaps are not of reproducible sizes, that gap may overwrite some data from the
next record on the tape. When the tape is then read, there may or may not be an extra
record. Since it is not possible to assure reproducibility, writing in the middle of the tape
is assumed to destroy any further contents.

Winding latency, the time needed to wind the tape to the desired place, is much
longer than rotational or seek latency on a disk, although once the tape is spinning, data
arrive in main store at about the same rate (about 2 megabits per second). Typical appli-
cations use tape in a strictly sequential sense, writing an entire tape before trying to read
any of it and reading the entire tape from start to finish.

1.3 Drums

In the 1950s, drums were used for main store. (The IBM 650 computer worked this
way.) Later they were used for secondary store (that is, files). They are principally used
now for backing store (that is, swapping). A drum is shaped like a cylinder and is
divided into circular tracks, each with its own read/write head. Like a disk, the drum is
constantly in motion. There is no seek latency, but there is still rotational latency. Even
rotational latency can be avoided for writing by always writing an entire track and start-
ing at any point in the rotation. More often, each track is divided into sectors, and the
operating system must wait for an available sector to come around. For swapping pages,
one sector is as good as another; the first free sector to appear (on any track) may be
chosen. Figure 5.3 shows how drums are arranged. Drums are not used very much any
more. Disks and ‘‘solid-state drums,’’ which are banks of memory chips behaving like
drums, have replaced them.

1.4 Communication lines

Communication lines are devices used to connect computers to terminals and to each
other. Since the operating system must deal with these lines, it is important to understand
some of their hardware details. Insimplex lines, data travel in only one direction.Half-
duplex lines allow data in both directions, but not at the same time.Duplex lines are like
two simplex lines tied together; they allow simultaneous communication in both

152 Transput Chapter 5

tracks

read/write heads

Figure 5.3 Structure of a drum

directions.

Hardware characteristics. Whether the communication line is connected
to a terminal or to another computer, certain characteristics are important. The first is the
speed at which information can be transferred. Speed is usually measured inbaud,
which, strictly speaking, is the number of electrical transitions per second. These may be
transitions between voltage levels or waveforms. Usually the baud rate is equivalent to
bits per second. Commonly available baud rates for terminals are 110 (10 cps), 300 (30
cps), 1200 (120 cps), 9600 (960 cps), and 19200 (1920 cps). The abbreviation ‘‘cps’’
stands for‘‘characters persecond.’’ In the standard ASCII character code, a character
requires 7 bits for data. Additional bits are used to make sure that the sender and the
receiver agree which bits are the first in a character. Inter-computer communication lines
can be much faster. High-quality telephone lines can transmit data at 56K baud. The
Ethernet, a multiple-access communication line, runs at 3M to 10M baud, and some
experimental lines run at 100M baud. We will discuss computers linked by such lines
into networks in Chapter 9.

No matter what form of transmission is used, all parties to the conversation must
agree on conventions for formatting information, acquiring the rights to use the transmis-
sion medium, and interpreting messages. These conventions are called aprotocol.
There are thousands of protocols serving hundreds of purposes. We will glance at only a
few.

Synchronous transmission. ‘‘Synchronous’’ comes from Greek roots
meaning ‘‘at the same time.’’ The essential feature of synchronous transmission is that
both the sender and the receiver share a common clock. Bits are converted by the sender
into voltages, which are sent across the communication line and are sampled at the
appropriate rate by the receiver. If they both use the same clock, the receiver knows
when to sample the voltage — namely, at the center of the time during which each bit is
transmitted. (If it samples too near the end, it may be confused by the transition between

Device hardware 153

one bit and the next.)
This simple picture is complicated by the fact that the sender and the receiver usu-

ally do not have the same clock. They must use their own clocks to achieve the same
result. Therefore, each transmission is prefixed by aheader containing aprearranged
pattern of bits that allows the receiver to adjust its clock to match the sender for the rest
of the transmission. As long as the adjustment is close, the transmission will be properly
understood. The clocks can be expected to drift slowly with respect to each other, so
after a while it is necessary to resynchronize. Therefore, the transmission is divided into
frames, each of which starts with the header.

Since the header is treated specially by the receiving hardware, it is necessary to
avoid using the header’s bit pattern inside the message itself. Therefore, the sending
hardware might insert an extra bit in the message every time it would otherwise acciden-
tally send a bit combination that looks like the header. Likewise, the receiving hardware
automatically strips those extra bits when they are discovered. This technique is called
bit stuffing.

If transmissions are restricted to multiples of full bytes, we say the protocol is
character-oriented instead ofbit-oriented. In this case the header is an entire byte with
special contents. An entire byte is stuffed instead of a single bit when necessary to
prevent an accidental header. The byte that is introduced is an example of anescape
convention, where a special character means “the following character is an ordinary
piece of data, not aspecial character”.We will see escape conventions again when we
look at terminal control.

BISYNC is an example of acharacter-orientedsynchronous protocol. To send
some text, a packet is formed with the following contents:

<SYN><SYN><SOH>control<STX>text<ETX>checksum

By <SYN> we mean the single character that means ‘‘synchronize.’’ It is used as a
header. The <SOH> character means ‘‘start of header,’’ and it introduces the control
section. This section contains the source, the destination, sequence numbers, and other
data of interest to the transmission protocol. The <STX> and <ETX> characters (for
‘‘start of text’’ and ‘‘end of text’’) delimit the data part of the message. The whole frame
is closed by a checksum, which is used by the receiver to check that the message arrived
undamaged. A <DLE> character is used as an escape convention to allow any of the spe-
cial characters, including <SYN>, <SOH>, <STX>, <ETX>, and <DLE>, to be present
in the message.

Asynchronous transmission. In comparison with synchronous transmis-
sion, asynchronous transmission is much simpler but requires a higher proportion of
extra bits. Instead of allowing a frame to be very long and contain many characters, we
put header and trailer bits on each character. If only a few characters need to be sent, the
asynchronous method actually uses fewer bits. For example, 110-baud asynchronous
transmission starts each character with a zero bit, then sends eight data bits, then two one
bits. Fewer ending bits are used at higher baud rates.

154 Transput Chapter 5

1.5 Summary of device characteristics

We have concentrated on magnetic media (disk and tape) and transmission lines because
they are often more complex than paper and card equipment. However, it is often useful
to know the characteristics of various devices in order to compare prices, capacities, and
speeds. The following table displays the current situation for typical devices.

��

Bytes Bytes Bytes Cost Cost
per per per per perMedium Device

record second medium medium ($) device ($)��

Reader 120 1−2K 120 < .01 8−40KCards Punch 120 1K 120 < .01 20−30K��

Dot matrix — 30 5K .03 200
Daisy — 100 5K .03 300
Train printer 132 1−7K 9K .03 12−75KPaper

Laser printer — 1−25K 5−10K .03 2−300K��

9-track — 120−390K 50M 10 12−50KTape Streaming — 100K 80M 5 1−3K��

Floppy 256 100K 100−500K 1 500Disk Hard 512 1−3M 10−1000M 1−10K 1−50K��

Drum Fixed head 512 1M 2M — 20K��

Glass tty — 1K 2K — 500Display Bit-mapped — 1M 100K — 1−5K��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Notes:
(1) One can typically stack up to 3000 cards in the bin on large card readers and

punches.
(2) Laser printers are limited in speed both by their connection to the computer

(often a 9600-baud line) and by the speed at which they can emit paper (ranging
from 10 to 200 pages a minute). They have resolutions ranging from 300 to 600
dots per inch, so they can effectively print about 2M bytes per page.

(3) The figures for magnetic tape are for 2400-foot reels at 1600 frames per inch.
One can also get 600- or 1200-foot reels, and they can be written at densities of
800, 1600, or 6250 frames per inch. The latency for starting the tape or stopping
it is about 5 milliseconds. Tape drives usually need controllers, which cost about
$20K.

(4) The seek latency for a small floppy is about 0.2 seconds.
(5) The seek latency for a drum about 4 milliseconds. Drums are no longer common.
(6) Displays can usually run at a number of speeds, ranging from 10 to 1920 charac-

ters per second. They hold about 24 lines of 80 characters.

Device hardware 155

2 THE DEVICE INTERFACE

The speed and complexity of a device determine how it is connected to the central pro-
cessing unit (cpu). Slow devices, like terminals, usually have a simple, computation-
intensive connection, whereas faster devices, like magnetic tape drives, could not transfer
effectively if computation must be involved. Simple devices can be given commands and
return results in just a few bytes. Complex devices may need more information before
they are ready to execute a command. We will examine three styles of connection, rang-
ing from the simplest to the most complex.

2.1 Device registers

Devices may be connected to the computer’s cpu bydevice registers, which are accessi-
ble either directly as part of physical store or indirectly via transput instructions provided
by the hardware. Figure 5.4 shows a simple view of a device connected by registers to
the computer. Device registers are used for four purposes.

� To transfer status information from the device to the cpu
� To transfer instructions from the cpu to a device
� To transfer data from the cpu to a device
� To transfer data from a device to the cpu.

kernel

processes

device interface

status data

device

interrupts
instructions

device driver

Figure 5.4 Device connected by registers

156 Transput Chapter 5

Sometimes the same register is overloaded to combine various meanings. For example,
let’s examine the keyboard on a DEC PDP-11. This device can be used only for input.
Two device registers are associated with each keyboard. They appear to be in main store
as far as the kernel is concerned, although the architecture of the PDP-11 actually imple-
ments the registers in an area distinct from main store. Here are declarations that define
these registers:

1 const
2 InterruptEnable = [bit 6];
3 InputReady = [bit 15];
4 type
5 KeyboardRegisters =
6 record
7 Status : bits; { 16 bits long }
8 Unused : char; { 8 bits }
9 Data : char; { 8 bits }
10 end;

The only instruction given by the cpu to the keyboard is ‘‘cause an interrupt when the
next character is typed.’’ This instruction is given by setting the InterruptEnable bit in the
Status register (line 7). The keyboard sets the InputReady bit in the same register to indi-
cate that there is a character that has been typed but has not yet been read by the cpu.
The cpu never sends any data to the keyboard. The keyboard transmits data to the cpu by
placing a character in the Data field.

The cpu can tell if an operation has completed in two ways.Polling involves
checking periodically all the device registers of busy devices to see if the Ready bit has
been set by the device in the Status register. (We called this bit ‘‘InputReady’’ for the
keyboard.) An extreme form of polling isbusy waiting, in which the cpu executes a
loop continually examining a Ready bit and waiting for it to be set by the device.

Because polling is time consuming, it is more common to request the device to
cause aninterrupt instead when the device next becomes ready. As shown in Figure
5.4, device drivers in the kernel are typically arranged to respond to such an interrupt,
switching to the kernel from any process. The kernel can then perform whatever actions
are appropriate — for example, starting the next transput order to that device. We call
this activity servicing the interrupt. If the interrupt signals the completion of an opera-
tion for which a process has been blocked, the kernel might move that process from its
transput-wait or main-store wait list back to the ready list before switching context back
to the interrupted process.

More complex devices, like tapes and disks, are not connected directly to the cpu.
Instead, they are first connected to acontroller, which monitors the device status, applies
control to motors, performs data checking, and knows the format of the medium. Figure
5.5 shows this situation. The controller acceptsorders from the cpu and either accepts or
returns data. The controller communicates with the cpu through its device registers. A
single controller may manage several devices of the same type. For example, a disk con-
troller can simultaneously perform a seek on one disk and a transfer on another. (Simul-
taneous transfers are not possible.) However, a tape controller cannot manage a disk
unit, nor can a disk controller manage a tape unit. Occasionally, controllers, which are
computers in their own right, encounter program errors due to an unanticipated sequence
of events. Most controllers accept a ‘‘reset’’ order that restores them to a default state.

The device interface 157

device driver

devicedevicedevice

orders

controller

datastatus

device interface

interrupts

processes

kernel

Figure 5.5 Devices connected by a controller

2.2 Direct memory access (DMA)

Using device registers to transfer data places a heavy burden on the cpu, which must ser-
vice an interrupt after every word has been transferred to or from the device. This bur-
den is especially severe for devices that transfer information so rapidly that the cpu could
not keep the device busy because it could not service interrupts fast enough. However,
some of these devices cannot wait very long for the next word of data. A writing tape
drive or a disk drive that is not sent data quickly enough is likely to write garbage on the
tape or disk. Polling, especially busy waiting, would keep up with the device at the cost
of preventing any other computation from taking place.

Direct memory access (DMA) is a hardware technique designed to relieve the cpu
of this burden for fast devices. DMA is demonstrated in Figure 5.6. Data are not
transferred through device registers but are placed in or retrieved from main store
directly by the device. The cpu can transmit instructions or orders to the device or con-
troller through registers, as before, but the instructions include information describing
where the data should be placed or found in main store. Physical store is usually used
because the DMA hardware is not attached to address-translation hardware. Interrupts
are used to signal the end of an entire transfer, which could transmit thousands of words
between the cpu and the device. During the course of the transfer, the status of the dev-
ice is available to the cpu if it should want to find out how it is going.

For fast devices like disks, there is a chance that main store cannot keep up with
the device, especially if there are several DMA transfers taking place at once. If main
store cannot supply the next byte to write to the disk when it is needed, the transfer ter-
minates with anoverrun error. Likewise, overrun can occur if main store cannot save
data being read from the disk before the next data are available. Overruns are prevented
by disk controllers that perform some internal data buffering. Some disk controllers have
a cache that can hold a track of data. These controllers can read entire tracks from the
disk at one time and store the data in the cache until the computer asks for them.

158 Transput Chapter 5

kernel

processes

DMA
interrupts

store
main

devicedevicedevice

orders

controller

status

device driver

Figure 5.6 DMA

2.3 Channels

Sometimes controllers are themselves connected not to device registers but rather to a
channel, also known as anIOP, for ‘‘input/output processor.’’ Figure 5.7 shows how a
channel is connected. The purpose of the channel is to provide some amount of device
transparency to the cpu. Channels are subsidiary cpu’s that use a different machine

kernel

processes

main
store channel

DMA

program
channel interrupts

controller

controller

controller

start

devices

device driver

Figure 5.7 Devices connected through a channel

The device interface 159

language. Their instructions are calledcommands. Sequences of commands are called
channel programs and are stored in the same main store used by the cpu. Typical chan-
nels can take channel programs containing more than one command; this facility is called
command chaining. In addition, they can often gather output data from various places
or scatter input data to various places in main store. This facility is calleddata chaining
or scatter-gather. DMA is universally available with channels.

The cpu sets up the program and then tells the channel to start running it. When
the channel program is finished, the channel indicates that fact by setting a bit in a status
register or by interrupting the cpu. While the channel program is running, the cpu can
investigate its status and halt it if something has gone wrong.

Channels come in various levels of sophistication. Aselector channel can manage
many devices, but only one may be transferring data at one time. Amultiplexor channel
can manage many devices, all simultaneously active.

Processes use virtual addresses, while the channel deals with physical addresses.
Therefore, if the operating system wishes to let processes submit their own channel pro-
grams, the kernel must translate the addresses in each such program before it is given to
the channel.

3 DEVICE DRIVERS

The bewildering variety and number of devices for computers is one of the severest chal-
lenges of the operating system writer. Each brand of disk, channel, tape, or communica-
tion device has its own control protocol, and new devices come on the market with great
frequency. It is essential to reduce this variety to some sort of order; otherwise, every
time a new device is attached to the computer, the operating system will have to be com-
pletely reworked. Forcing a regular structure, at least at some level inside the kernel,
works across a wide range of devices. The device-specific parts of device control can
then be sequestered into well-defined modules.

The Unix operating system sets a good example of forcing order on the chaos of
device types. Each device can be described by two numbers: the type (each different
brand of tape drive is usually a different type) and the instance (each separate drive of the
same type has its own instance number). Each type is associated with adevice driver
that accommodates the peculiarities of that device type. The device driver for a given
type maintains separate data structures for each instance.

Device drivers provide a standard interface to the rest of the kernel. They provide
routines foropening andclosing the device (used by the kernel when a process wants to
start or stop using the device) as well as routines for transmitting data to or from the dev-
ice. Only a few data formats are used, so that the device driver knows what to expect.
For example, data may be transmitted in fixed-size blocks, with a standard header. This
header might include the following information.

� device type
� device number

160 Transput Chapter 5

� address of the data on the device
� address of the data in main store
� amount of data to transfer
� whether the data are to be read or written
� what kernel module is waiting for the completion of this operation

3.1 Two levels of device driver

Device drivers must serve two masters: the rest of the kernel and the device itself. The
kernel indicates its desires by calling the routines just mentioned, asking for data to be
read or written. When these transfers are complete, the device driver is expected to
inform the appropriate kernel module. (We will discuss how the individual kernel
modules can signal each other in Chapters 8 and 9. For now, imagine that there are little
processes, which we will calltasks, in the kernel, and that one is waiting for the comple-
tion of this transput operation. It is the job of the device driver to unblock that task once
its request has been satisfied.) The device itself is given commands by the device driver.
When these commands have been accomplished, the device causes an interrupt. This
interrupt is set to transfer control to the appropriate device driver.

One useful organization for device drivers to help them deal with these very dif-
ferent sorts of requests is to divide them into two pieces. Each driver has an ‘‘upper’’
and a ‘‘lower’’ part. The two parts communicate by sharing data structures. This organi-
zation is shown in Figure 5.8.

The upper part accepts requests from the rest of the kernel. For example, the upper
part of the disk driver might accept a request from the storage manager to write out a

devices

kernel

processes

awaken

lower driver

upper driver

controlinterrupt

remove

reorderinsert

work queue

writereadcloseopenkernel task

Figure 5.8 Two-level structure of a device driver

Device drivers 161

page onto backing store. Similarly, a process that wants to write to a printer might pass
data by a system call, which some kernel task might then pass on to the printer driver.
The upper part of the device driver transforms these requests into entries in a list of pend-
ing work for the lower part. It may even sort the entries in the pending-work list so that
some transput operations precede others.

The lower part only wakes up when there is an interrupt or when new work is
placed on its pending-work list. It usually sets the processor status in such a way that
other interrupts from the same device are prevented until it is finished with its current
work. If the interrupt that awakens the lower part indicates completion of some transput,
the appropriate data structure is so marked, and the kernel task that was waiting is
unblocked. The upper driver need not be informed. The lower driver then checks to see
if there is any more work queued up for it, and if so, it initiates the next operation.

To give some feeling for the sources of complexities in device drivers, we will
consider three devices: the clock, terminals and disks.

3.2 Clock device driver

Clocks come in several styles. The simplest, aline clock, generates an interrupt every
‘‘tick,’’ that is, every 60th (or 50th) of a second. It might also have a register that indi-
cates how many ticks have occurred since the register was reset. The clock may be pro-
tected against power failure by a battery, which allows it to continue ticking even when
the computer is down or without power. Slightly more complex clocks have a register
that indicates how many interrupts were missed due to the cpu running at a priority too
high to let the clock interrupt.Programmable clocks also have a count register that may
be set by the software. The clock decrements that register at a standard rate (often every
microsecond) until it reaches 0, at which time it generates an interrupt. Some computers
have both line clocks, which are used for recording the time of day, and programmable
clocks, which are used for marking scheduling events. If there is no programmable
clock, the line clock alone can be used for scheduling.

When a line clock interrupts, the clock driver typically performs the following
functions:

� Increment the software time data structure.
� If this clock is used for scheduling, decrement the remaining-time field of the

currently running process, if any. If that value has become zero, invoke the
scheduler.

� Perform simple accounting. For example, the currently running process might be
charged for one tick worth of time and for its current main-store use.

� If there is no programmable clock, decrement the counter for the next alarm, and if
it is now zero, invoke whatever kernel task was waiting for an alarm. Alarms are
used for timeouts, which are used in communication protocols and elsewhere. If
there is a programmable clock, it will be used to schedule alarms.

� If the current process wishes to be profiled, use its program counter to determine in
which region of the program it is executing and increment the associated counter.
(For example, each page of the virtual space of the process could have a separate

162 Transput Chapter 5

counter.) These counters can be used by the programmer to determine where the
program is spending its time.

The necessary actions can often be accomplished very quickly, and context can then
switch back to the interrupted process.

3.3 Terminal device drivers

The Beautification Principle applies to both the process interface and the user interface.
The user interface is heavily influenced by the device driver for the terminal. When the
user types a key on the keyboard, the lower part of the driver mightecho the character on
the associated display device. (A terminal on a half-duplex line does not need this ser-
vice.)

Often a user will type ahead before any program has asked to read the information.
The device driver might store a certain amount of type-ahead in a buffer so that it is not
lost. Most operating systems echo typed-ahead characters as soon as they are typed, but
some, like Tenex, wait until the characters are read by some process before echoing.
This latter approach has the advantage that the display is never cluttered with typed-
ahead characters. In addition, the process that wants to read the characters might not
want them echoed at all; deferring the echo lets the driver accommodate such wishes.
But it is hard to type accurately if you can’t see what you are typing.

Many operating systems provideediting facilities that the user can invoke before a
program reads data that have been typed in. Mistakes can be removed by deleting or
overwriting the offending characters. Most operating systems define at least two editing
characters, one to erase the entire line that has been typed in so far and another to erase
the last character on the line. These facilities are available until the useractivates the
line by pressing thecarriage-return key.Special characters are reserved for editing pur-
poses. The backspace key, which is the same as <control>H in the ASCII character set,
is quite common for erasing a single character. The <control>U key is often used for
erasing an entire line. These keys echo in such a way that the user can tell how much has
been erased. One convention is to repeat the character that is being erased. Another,
which works only on video displays, is to erase the character from the screen. Erasure is
usually performed by moving the cursor back, printing a space, and then moving the cur-
sor back again. Erasing a tab character from the screen requires special effort, since the
number of repetitions of this erasure sequence depends on the exact position of the char-
acter before the tab.

More sophisticated operating systems provide additional features, including the
following.

� Erasing one word
� Moving backward or forward in the input line
� Deleting or adding text at the current location in the input line
� Searching for characters in the line
� Recalling previous lines that have already been activated. This facility is particu-

larly useful if the user types in a command to a program, but the command has an

Device drivers 163

error. After the program has rejected it, the user can recall the erroneous line,
correct it by using the editing features, and then resubmit it.

There are many different terminals on the market, and each seems to have its own con-
ventions for such actions as clearing the screen and moving to a particular place on the
screen. In addition, terminals are capable of transferring data at different rates. Some
operating systems provide some amount ofcustomization in how they deal with termi-
nals. For example, once the terminal driver knows what kind of terminal is being used, it
can decide how to echo editing characters.Users have personalpreferences, as well.
Some prefer to use <control>X to erase lines. Customization can be provided by service
calls that establish these special characters. The user who wants a particular set of con-
ventions can run a program that submits these calls. Even the activation character, which
is usually just the carriage return, can be reset in many operating systems.

3.4 Disk device drivers

One trivial function of a disk device driver is to smooth out the chunky structure of the
physical disk, with its sectors, tracks, and cylinders, and provide the abstraction of a vir-
tual disk that is a linear array of sectors. Sectors on trackt in cylinderc has this identi-
fying number:

SectorId = (c .TracksPerCylinder + t).SectorsPerTrack + s

Higher levels of software in the kernel can use sector identifiers instead of triples to
describe locations on a disk.

A less trivial function of the disk driver is to reduce the effect of latencies in
accessing the disk. Several techniques are available.

� Processes that require disk access may be blocked in a disk-wait list until the
request can be satisfied. Meanwhile, other processes can run. We call this tech-
nique synchronous transput. Alternatively, a process that can perform useful
computation before the transput completes may be allowed to continue. We call
this techniqueasynchronous transput. We discuss this difference later. In either
case, it is important to overlap transput and computation.

� Large data objects can be stored in contiguous regions on the disk so that once the
first seek has finished, the rest of the data can be accessed without additional
delays. For this reason, allocation of disk space is often made in increments of
entire tracks or even entire cylinders.

� Similarly, the blocks that constitute a file might be constrained to reside close to
each other. (We will discuss physical allocation of files in Chapter 6.)

� When the same disk pack is used both for secondary store (files) and backing store
(swap space), the swap space should occupy the tracks halfway between the center
and the edge, because items in this location can be accessed with the lowest aver-
age seek latency.

� Disk requests are continually generated by main-store management (swapping of
pages or segments) and file usage; often several requests are pending. We can

164 Transput Chapter 5

impose an order on the outstanding disk requests so that they can be served
efficiently.

We will direct our attention to this last strategy, which is known asdisk-head schedul-
ing.

In general, disk-head scheduling makes the following assumptions:

� There is only one disk drive. If there are several, each is scheduled independently.
� All requests are for single, equal-sized blocks.
� Requested blocks are randomly distributed on the disk pack.
� The disk drive has only one movable arm, and all read/write heads are attached to

that one arm.
� Seek latency is linear in the number of tracks crossed. (This assumption fails if the

disk controller has mapped tracks at the end of the disk to replace ones that have
bad sectors.)

� The disk controller does not introduce any appreciable delays.
� Read and write requests take identical time to service.

We will evaluate various policies by describing how long requests have to wait as a func-
tion of the load. Both the average wait time and the variance of the wait time are impor-
tant. A low average with a high variance means that some requests are taking a very long
time even though most are served quickly. The load is measured in requests per second.
We could also use the length of the outstanding-request list.

The simplest policy is to order disk requests on a first-come, first-served (FCFS)
basis. FCFS makes sure that every request is eventually served; there is no starvation.
However, every request is likely to suffer a seek operation. This method works fine for
very low loads, but it saturates quickly — that is, the load doesn’t have to grow very
large before the disk can no longer keep up with the work. The variance of the mean
wait time is fairly low.

FCFS disk-head scheduling and its refinements once again illustrate the Law of
Diminishing Returns, which we first saw in Chapter 1. There are many alternatives to
FCFS, and they are all much better. For example, the Pickup method keeps the requests
in FCFS order to prevent starvation, but on its way to the track where the next request
lies, it ‘‘picks up’’ any requests that can be serviced along the way.

Another alternative policy is Shortest Seek-latency First (SSF), which next serves
the request whose track is closest to the current one. This policy does allow starvation,
but if a request is consistently bypassed, the disk must be incapable of keeping up with
the disk requests in any case. This kind of starvation is not as bad as the underlying
problem, which is very likely that the main-store allocation policy is causing thrashing.
SSF has the advantage of minimizing the total seek latency and saturating at the highest
load of any policy. On the negative side, it tends to have a larger wait-time variance.

One very popular policy is called Look. The disk head is either in an inward-
seeking phase or an outward-seeking phase at any time. As it seeks inward, it picks up
any requests it passes. It changes direction only when there are no more requests ahead;
it then switches to seeking outwards and fills all requests in that direction as it gets to
them. When requests come so frequently that the disk can barely keep up, a circular vari-
ant, C-Look, can lead to better variance among the request latencies. This variant always
seeks inward. When the last request has been serviced in that direction, a single seek is
performed to the outermost track with a pending request without picking up any requests

Device drivers 165

on the way out.
To illustrate these disk-scheduling algorithms, let us consider a disk with 200

cylinders (a typical number). Let’s assume that at a given instant, the read/write head is
sitting at cylinder 100. Transfers to or from the following cylinders have been requested.
The requests are listed in the order in which they arrived. It is irrelevant whether they are
read or write requests.

23 89 132 42 187 165 21 34 101 102 34 2 167 3 34 199 20

We will assume that no new requests arrive while we service this set. (By the way, it is
quite unusual for more than three or four requests to be outstanding in a well-tuned
operating system.) The algorithms we have seen have the following behavior.

���

Requests 23 89 132 42 187 165 21 34 101 102 34 2 167 3 34 199 20motion
���

FCFS 23 89 132 42 187 165 21 34 101 102 34 2 167 3 34 199 201472
Pickup 89 42 34 34 34 23 101 102 132 165 167 187 21 20 3 2 199 623
SSF 101 102 89 132 165 167 187 199 42 34 34 34 23 21 20 3 2 322
Look 101 102 132 165 167 187 199 89 42 34 34 34 23 21 20 3 2 296
C-Look 101 102 132 165 167 187 199 2 3 20 21 23 34 34 34 42 89 383
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

The SSF and Look methods have similar results, but if requests had continued to arrive
during the time others were serviced, it is likely that SSF would have turned back to pick
up some new requests close to its current position. Look turns back only when there is
no further work in the current direction. As expected, FCFS has the worst behavior.

To compare these methods further, we turn to simulation results. The simulated
disk has 200 tracks. Seek latency is (0.5+ 0.4. Distance) milliseconds if the distance is
at least one track and zero otherwise. (The 0.5 term represents time needed just to start
and stop the head.) There are 20 sectors per track. The disk spins at 3600 revolutions
per minute. Rotational latency depends on when the head arrives at the track and the sec-
tor that is needed. The simulation compares the behavior of the five policies on a work-
load of 1000 requests, with interarrival time selected from an exponential distribution.
The average arrival rate is allowed to vary between 5 and 100 arrivals per second. Both
the track and the sector needed by each request are selected from a uniform distribution.
(Very similar results were obtained from using a normal distribution for tracks, with
average value 100 and standard deviation 100.)

Figure 5.9 shows the average time for a disk request to be serviced for the different
methods across the given workloads. The FCFS method is clearly terrible. The other
methods are not particularly easy to distinguish. Surprisingly, C-Look did not perform as
well as Look, even with high arrival rate. (It did perform slightly better than Look with
requested tracks selected from a normal distribution.) Figure 5.10 shows the throughput
— that is, the number of requests served per second — for the five methods. This figure
shows even more clearly that FCFS is by far the worst but that all the other methods are
essentially indistinguishable. If the arrival rate is less than 22 requests per second, FCFS
manages just as well as the others with respect to throughput, although its response time
starts falling behind the others at about 10 requests per second.

166 Transput Chapter 5

16.00

8.00

4.00

2.00

1.00

0.50

0.25

0.12

0.06

0.03
1009080706050403020100

C-Look

Look

SSF
Pickup

FCFS

arrival rate

Figure 5.9 Average response time

128

64

32

16

8

4
1009080706050403020100

C-Look

Look

SSF

Pickup

FCFS

arrival rate

Figure 5.10 Throughput

Device drivers 167

4 DATA MODIFICATION

Data sent to a device need not be an identical copy of the data found in main store. Three
distinct kinds of modification may be performed, each for a different reason.

4.1 Data compaction

When a great deal of information is to be sent across an expensive transmission line,
modifying the data to occupy fewer bits is worthwhile. Similarly, if data must be saved
for a long time on an expensive medium, it will be cheaper if the data can be crammed
into fewer bits.

There are often obvious ways to save space. For example, a file that represents a
computer program may have many space characters. Instead of sending all the spaces,
each blank region can be encoded by a count of how many spaces there are. This method
is an example ofrun-length encoding. Television pictures are large arrays of intensity
values. Instead of sending a 6-bit intensity value for each element of the array, a 3-bit
difference between that element and the previous one often suffices. Some escape
mechanism can be used when the difference cannot be represented in 3 bits. This method
is an example ofdifference encoding. More sophisticated coding methods exist, such as
Huffman codes, which assign often-used characters a short code, and less used ones a
longer code.

4.2 Data encryption

Another sort of transformation can be applied to data to hide their contents. Actually,
secrecy (can anyone else read the data?) is only one part of a larger set of security con-
siderations that includesauthentication (who generated the data?) andprotection (can
anybody modify the data?). The transformation used for these purposes is calledencryp-
tion. Data before the transformation is applied are incleartext form. The encrypted
data are inciphertext form. A particular encryption algorithm may have an associated
decryption algorithm that is used to transform ciphertext back into the original cleartext.

You might think that an encryption algorithm that has no decryption would be use-
less. Actually, suchtrap-door encryption algorithms have an important use in authenti-
cation. Many operating systems identify each user by a user name and a password,
which the user is expected to keep secret. Any person who knows that name and pass-
word has all the privileges of that user. Most operating systems store the passwords in a
file; anyone with access to that file can therefore learn everyone’s password. This situa-
tion is very vulnerable because any loss of security endangers everyone’s security, and
security depends on powers entrusted to humans.

A far better approach (taken by Unix) is to encrypt each password with a trap-door
function and to store the encrypted passwords in a publicly accessible file. The

168 Transput Chapter 5

encryption method is publicly available. Now any program that wishes to authenticate a
user may ask for a password, encrypt it, and compare the result to the value in the file. If
the values match, the password is correct. In particular, the logon program, which greets
the user at the beginning of the interactive computer session, can tell if the user knows
the correct password. However, the huge number of possible passwords and the fact that
no decryption method exists make it infeasible for an intruder to guess the password,
because every conceivable password would have to be encrypted and compared with the
file. This scheme assumes, of course, that people choose fairly long and fairly irregular
passwords. Some installations of Unix refuse to allow a password that is too short or too
closely related to an English word. VMS can be set to insist that specific users change
their password every so often.

Most applications of encryption, however, require that the ciphertext be converti-
ble back into cleartext. Unfortunately, all current encryption methods have problems.
The ‘‘one-time pad’’ is the only provably secure method known at this time. It derives
the ciphertext by a byte-wise exclusive-or operation between the cleartext and a ‘‘key’’
whose length must be at least as long as the message. The decryption method uses the
same key and the same algorithm. The key must never be used again, or it becomes
easier and easier to guess. Since both the originator and the recipient of the ciphertext
must agree on the key, it must be transmitted as well, a procedure that is just as difficult
as the original problem of secure transmission. Computer-generated pseudo-random
numbers create keys that are too easy to guess, by the way.

A currently popular encryption method is the Data Encryption Standard (DES).
The DES method was developed by the National Bureau of Standards with several goals
in mind. Many commercial applications are currently using DES. The algorithm (either
encryption or decryption) can be performed efficiently with a special-purpose chip, but
far less efficiently with a program. Since the key is 56 bits long, there is plenty of room
for picking unique keys. Unfortunately, some keys turn out to be weak; if a weak key is
used to encrypt, the ciphertext can be analyzed quite easily to discover the cleartext. It is
not certain how many keys are weak or ‘‘semi-weak.’’ There is some suspicion that 56
bits is insufficient to prevent a successful attack that uses massive amounts of computer
time. It is possible that a longer key (perhaps 100 bits) would be sufficient.

The one-time pad and DES are considered ‘‘conventional;’’ they share the pro-
perty that the same key is used for encryption and decryption. A non-conventional
approach called ‘‘public-key cryptography’’ uses different keys for the two transforma-
tions. One public-key method, called RSA after its inventors (Rivest, Shamir, and Adel-
man), has resisted attacks so far, although it has not been proved to be computationally
secure.

The RSA method itself is too complex to discuss here. The general properties of
public-key methods are elegant, however, so we will outline them. Every user U has a
pair of keys, one for encryption,EU , and one for decryption,DU . It is impossible to
guessEU from DU or vice versa. Ciphertext encrypted withEU is decrypted byDU .
Everyone’s E key is considered public; it is saved in a public place where anyone may
access it. Let’s sayA andB are two parties (programs, computers, or people) that want
to send secure messages to each other.A encrypts messages forB usingB’s public key
EB . B can decrypt them using its private keyDB , but no one else can decrypt them
because no one else knowsDB . Similarly, B encrypts messages forA usingA’s public
key EA . These messages are secret. However,B cannot be sure thatA has sent the mes-
sages because anyone could have usedEB , B’s public key.

Data modification 169

If we wantB to be able to authenticateA’s messages, to be sure thatA sent them,
we also need to assume that if we take cleartext and applyDU , we get a sort of reverse
ciphertext, which is also secure and can be decrypted by applyingEU . Now let A
encrypt its messages toB by usingA’s secret keyDA . B can decrypt the messages by
usingA’s public keyEA . B is sure thatA sent the message because onlyA knowsDA .
However, anyone else who gets this message can also applyA’s public key EA and
decrypt it, so the message is not secure.

These two ideas can be combined to create messages that are both secure and
authenticated: LetA first encrypt the message with its private keyDA , then encrypt the
result withB’s public keyEB . Only B can read this message because onlyB knowsDB .
OnceB has appliedDB , it then appliesA’s public keyEA to derive the cleartext and be
sure thatA composed the message. Figure 5.11 shows the three cases we have just dis-
cussed.

We see that the RSA method is able to send secure, authenticated messages. The
transformations, however, are very time-consuming. It is currently used principally as a
way of securely transmitting keys that can then be used by other, cheaper methods such
as DES.

4.3 Reliability

secret and authenticated

authenticated

secret

E
B

A
D

BA

cleartext

A
D

BA

cleartext

BA

B
E

cleartext

Figure 5.11 Secure and authenticated messages with public-key encryption

170 Transput Chapter 5

We have seen that data transformations are useful to compress data and to introduce
security. A third type of transformation is used for reliability. Communication lines
suffer from damaged messages for many reasons, depending on the physical nature of the
line. Electrical disturbances, such as lightning and nearby power sources, can introduce
spurious signals. Contention for a shared line can cause competing messages to destroy
each other. The signal may be attenuated over distance to the point that it cannot be reli-
ably detected. Similarly, bits stored on a disk or a tape might be recorded too faintly, or
the medium might have a small flaw. When they are read back, they may appear dif-
ferent from how they were written. Even bits stored in main store are subject to a low
level of error.

There is only one mechanism for providing reliability —redundancy, which
means using extra bits. This single mechanism takes many forms, depending on the
types of errors that are expected and their expected frequency. For example, an extra bit,
known as theparity bit, can be added to each word in main store. It is set to ensure that
the total number of one bits in the word is even. (Sometimes odd parity is used instead.
They are equivalent in purpose.) Any word with a one-bit error will have the wrong par-
ity, which can be detected. Most computers have at least one bit of redundancy in their
main store for this purpose. If two errors strike the same word, the error will not be
detected. The probability of this event is fairly low. If the probability of double errors is
not low enough, more than one redundant bit can be placed on each word. Now not only
can one-bit errors be detected, but they can also be corrected on the fly. The correct
word is the ‘‘closest’’ good word to the damaged word, where ‘‘closest’’ is measured in
Hamming distance: the number of bits with different values. Two-bit errors can be
detected but not properly corrected. Ifn -bit errors are to be detected, legal bit patterns
must not have a Hamming distance of less thann + 1. In general, by adding enough
redundant bits, anerror-correcting code can be designed to correct any desired number
of errors. The correct amount of redundancy is the amount that reduces undetected or
uncorrected errors to an acceptable level. Main store is often designed to correct single-
bit errors.

Parity and its generalizations are also used on devices like tape drives and disk
units. Here the typical error is not a random bit but rather a consecutive string of dam-
aged bits. A method known as the ‘‘cyclic redundancy check,’’ or CRC, calculates the
redundant bits to be stored at the end of each chunk of data. This set of bits is often
known as achecksum.

Checksums and parity bits are usually below the level where the operating system
has any control. The operating system takes over when a device (including main store)
discovers an uncorrectable error. This discovery is usually converted into an interrupt or
a trap to the kernel. For devices like tape or disk, the device driver will retry the opera-
tion that failed until either it succeeds or some retry limit is reached. In the latter case,
the device is broken (perhaps the tape or disk surface is damaged), and whatever applica-
tion was trying to use it must be cancelled. The driver might make an entry in a log
detailing the error.

For communication devices talking to other computers, retry should eventually
succeed. The recipient of the damaged message could send a note to the sender request-
ing retransmission. However, the request for retry might itself be lost, and the recipient
might not even know who the sender is, because that part of the message may have been
damaged. Instead, it is customary for the recipient to acknowledge each undamaged
message it gets. The sender retransmits any message it has sent that is not acknowledged

Data modification 171

within a reasonable time, on the assumption that the original message was damaged in
transit. Of course, the acknowledgement may be the one that was lost or damaged, so the
recipient must be prepared to deal with duplicate messages that the sender accidentally
sent. Sequence numbers are used to distinguish messages so that the recipient can dis-
card any message with a duplicate sequence number.

5 THE PROCESS INTERFACE

We started this discussion by presenting the physical structure of devices and how they
connect to the computer. Next, we dealt with the device interface and device drivers
inside the kernel. We now turn to the process interface to transput.

In keeping with the Beautification Principle, the kernel may wish to introduce dev-
ices at this level that don’t actually exist at a lower level. For example, the concept of a
‘‘file,’’ which we discuss at length in Chapter 6, is purely the invention of the operating
system. Processes can pretend that each file is a separate device that can be read or writ-
ten, but in fact those actions are translated by the operating system (typically by a file
manager in the kernel) into actions on the underlying devices, usually disks. Very few
processes, if any, deal directly with the disk device; in many operating systems, this dev-
ice is completely hidden from processes.

The concept of ‘‘file’’ can be used as a metaphor for all devices; Unix uses this
elegant idea to unify the process view of transput. Instead of presenting a different set of
service calls for each kind of device, each device looks like a file and responds to service
calls for files. One extra call is provided for special actions that can’t be fit into the meta-
phor, such as setting the density of a tape drive or setting the echoing characteristics of a
terminal.

Not only can devices be cast as special ‘‘device files,’’ but also this metaphor can
be extended to data structures that the kernel may want to make available to processes,
such as the physical store of the computer (only available to privileged processes, of
course) or a ‘‘bit bucket’’ into which anything may be written but which always looks
empty when read. In Chapter 9, we will see that inter-process communication can also
be made to look like file access.

The operating system designer has many alternatives in designing the data-transfer
part of the service calls. We will discuss two issues that confront the designer: whether
transput should be synchronous and how locations are specified in main store. For the
sake of discussion, we will start with six basic service calls that a process may make
when dealing with a device. The details of the semantics of these calls will be discussed
in the following sections.

� Open(device name, intent). This call tells the appropriate device driver that the
process plans to use the given device. The intent indicates whether reading, writ-
ing, both, or just appending aredesired. At thisstage, deadlock-avoidance or
detection algorithms can be used, as discussed in Chapter 4, to make sure the pro-
cess will not be blocked forever waiting for the device. Similarly, the device
driver can check to make sure the process has the necessary privileges to open the

172 Transput Chapter 5

device for the stated intent. We will discuss access control in Chapter 6 when we
talk about files. The result of this call is adevice descriptor, which the process
will use to refer to the device in other service calls.

� Close(device descriptor). This call tells the device driver that the process is
finished with the device and that it can be used now by some other process.
Device-specific finalization will be performed. For a tape, this finalization might
take the form of rewinding and unloading the tape and printing a message for the
operator to dismount the tape.

� Position(device descriptor, where). This call tells the device driver to position
the device to a particular location. For example, a tape may be advanced one
record or one file in this way. Likewise, a disk may be set to read at a particular
surface, track, and sector. In the absence of Position calls, the device might move
to the ‘‘next’’ location after each Read and Write.

� Read(device descriptor, virtual address, amount). This call causes the device
driver to transfer data from the device to the virtual address given in the process.
If the device does not have the desired number of bytes available (for example, the
user types ‘‘end of transmission’’ into a terminal before the requested number of
bytes has been entered, or the end of a file or tape record is reached), fewer bytes
may be read.

� Write(device descriptor, virtual address, amount). This call causes the device
driver to transfer data from the process to the device.

� Control(device descriptor, code). This call performs other actions that do not fit
into the file metaphor, such as setting the density of the tape drive or the echo
characteristics of a terminal.

Figure 5.12 shows how these calls fit into our picture of an operating system.

5.1 To block or not to block

The most far-reachingchoice is whether transfer should cause the process to block or
not. A blocking transfer is calledsynchronous because when the process next executes,
it can assume that the data have been transferred. The alternative isasynchronous

open close position read write control

processes

kernel

devices

process interface

Figure 5.12 The process interface

The process interface 173

transfer, in which the process knows only that the operation has started. The process may
be able to discover its completion by explicitwaiting, with a ‘‘wait’’ service call; bypol-
ling, with repeated inspection of a completion flag; or byvirtual interrupt. A virtual
interrupt affects the process much as a device-completion interrupt from a physical dev-
ice affects the kernel. That is, it saves state information in a safe place (usually the stack)
and sets the program counter to the address of the interrupt handler. We can devise the
following service calls to help processes when transfer is asynchronous.

� Wait(device descriptor, timeout). The process is blocked until the action
currently under way on the device (if any) has finished. The timeout tells how
patient the process is. It can be set to infinity if the process is very patient, to zero
if the process just wants to poll to see if the device has finished yet, or to some
intermediate value. This service call returns information on whether the transput
finished or not.

� Handle(device descriptor, routine). This call tells the device driver that when-
ever asynchronous transput completes on this device, the process should be inter-
rupted and should start executing at the address specified by ‘‘routine.’’ The rou-
tine will be called with arguments indicating which transput has finished.

If transput is asynchronous, the operating system designer must decide what a second
Write means if the previous one has not finished or what a simultaneous Read and Write
might mean. These could be treated as errors, or the second call could block (as if it had
performed Wait) until the first has finished. We will see an alternative solution in the
next section.

Until an asynchronous write operation has completed, the process should not
modify the region in its address space that is to be written out because the transfer may
be in progress. The kernel may ease this restriction by copying data to be written out first
into a kernel data structure called abuffer before unblocking the process. Likewise, the
process should not access the region into which an asynchronous read operation is in pro-
gress because it does not know when the data have arrived.

A related problem for the kernel is dealing with a process that terminates while an
asynchronous transput is in progress. Those parts of its address space that are tied down
must not be reallocated to other purposes until the transput has finished. It is not always
possible for the kernel to halt channel programs while they are running. The kernel may
note in the context block for that process that termination is pending; the main-store
resources tied down for that process are reclaimed only after the transput has completed.

5.2 Main-store addresses

The process must somehow specify the location in main store that the data are to be read
into or written from. The simplest alternative from the point of view of the process is to
specify a starting place and a length in virtual space. The kernel should check, of course,
that the region specified is entirely within the address space of the process. If the device
is a block device — that is, if it requires transfers in fixed-size chunks — the kernel
might provide its own buffers of the correct size as an intermediate location for the data.

174 Transput Chapter 5

As we will see, the kernel can use these buffers as a cache to improve performance. If
the application is time-critical and does not want to suffer the delay of copying data
within main store between kernel buffers and the process address space, the appropriate
part of that address space can be tied down and the device can transfer directly into or out
of the process space.

A popular alternative way to specify where the data reside is by acircular buffer
pool in the virtual space of the process. This pool is logically an array of buffers
arranged in a circle, as shown in Figure 5.13. Typically, separate buffer pools are used
for output and input. Buffer pools allow asynchronous transfer without the problem we
saw earlier of two transputs active at the same time. Let us consider output first. Each
buffer has the following declaration.

1 Buffer =
2 record
3 Busy : Boolean;
4 Position : DeviceAddress; { not always required }
5 Data : array 1:BlockSize of byte;
6 end;

The Position field (line 4) is used if every buffer to be output states explicitly where on
the device the data are to be placed. For sequential output, this field can be omitted. The
Busy field (line 3) indicates whether output is in progress from this buffer. Initially, all
the buffers are free — that is, not busy. We have shown free buffers as open squares in
Figure 5.13. As the program creates data to be written out, those data are placed in the
first free buffer. As soon as the buffer is full (shown by crosshatching in the figure), a
Write service call is invoked. The kernel initiates output but allows the process to con-
tinue asynchronously. The Busy flag is set true for the duration of the transfer; as soon as
the kernel knows that the transfer is complete, the flag is reset to false. Meanwhile, the
process may be filling other buffers. The process must pause if it needs another buffer
but the next one is still busy; in this case it may use the Wait service call.

outputinput

process is writing

kernel is filling

process is reading

kernel is emptying

Figure 5.13 Circular buffer pools

The process interface 175

Input buffers have the same declaration as output buffers. The kernel is expected
to fill these buffers ahead of the process. As soon as the process has finished using the
data in a buffer, it tells the device driver by performing the following service call:

� FreeBuffer(buffer address). This call resets the Busy flag to false and informs
the device driver that the buffer is ready to be filled with new data. (Where the
data come from is determined by a previous call to Read.)

Buffer pools allow the programmer to tailor the number and size of buffers to the appli-
cation. The process sets up the buffer pools by a service call:

� CreatePool(device descriptor, buffer length, number of buffers, direction).
This call creates a buffer pool for the given device. The direction specifies
whether these are input or output buffers. Space may be created in a new segment
or as a new region at the end of virtual store. This call might have the side effect
of making transput asynchronous.

The advantage of the buffer-pool method is that programs that require more buffers for
efficiency do not compete for buffers with other programs: The buffers are entirely
within the address space of the process, not in a common pool in the kernel. Copying is
never necessary between kernel and user buffers because the size of the data area of a
buffer is exactly the correct size for the device. However, the programmer now has the
responsibility to pack data into the fixed-size buffers and to handle the asynchronous
nature of transput. In addition, it is often a matter of guesswork to decide how many
buffers are enough.

A third alternative places even more responsibility in the hands of the programmer:
The process executes channel programs instead of transput service calls. To perform a
read operation, for example, the program builds a channel program of whatever complex-
ity is desired and submits the following service call:

� StartTransput(address of channel program). This call starts the channel pro-
gram. It returns a descriptor that can be used in the Wait or Handle calls.

The channel program could be complex enough to rewind a tape and then copy the con-
tents of several non-consecutive disk tracks onto that tape. During the execution of the
channel program, the process could be occupied in other work. This alternative is attrac-
tive because of the efficiency it permits in performing complex transput-bound opera-
tions. However, it requires programmers to be experts at channel programs or to rely on
library packages that create simpler environments.

Channel programs executed by the process are a real headache for the operating-
system implementor. Because typical channels do not have access to the address-
mapping hardware, they expect all main-store addresses to be physical addresses. The
operating system must therefore translate all the main-store addresses in the channel pro-
gram. It must also tie the channel program down. Regions that are contiguous in virtual
space may be scattered in physical space, so single commands in the channel program
may have to be split into several subcommands.

In some cases splitting is not possible. For example, a disk block usually must be
read into a physically contiguous region of main store. If the channel program specifies a
virtual region that is not physically contiguous, the operating system must either declare

176 Transput Chapter 5

the channel program invalid or must introduce a hidden copying of data from a kernel
buffer. Device addresses must also be modified or at least checked for validity. Other-
wise a process could blithely damage data on any sector of the disk. Usually the operat-
ing system provides an environment for the process that includes ‘‘virtual tracks,’’ and
references to thesetracks must be mapped by the operating system to the actual tracks
that are supporting them. With luck, the size of a virtual track is the same as the size of a
physical track.

5.3 Implementing the service calls

It is not hard for the envelope (the module of the kernel that first receives service calls) to
translate device service calls into requests on the upper parts of the appropriate device
drivers. The context block for each process includes an array of open device descriptor
records. The device descriptor given to the process can be an index into this array. The
descriptor-record array mightlook as follows.

1 OpenDevices : array 0:MaxOpenDevice of
2 record { open device descriptor }
3 InUse : Boolean; { false if this array entry is free }
4 DeviceType : (Tape, Disk, File, Memory, Printer ...)
5 DeviceNumber : integer; { which tape, etc. }
6 CurrentPosition : integer; { which physical byte }
7 Mode : (ReadOnly, ReadWrite, WriteOnly, AppendOnly);
8 end { open device descriptor }

A free slot ischaracterized by afalse InUse field.
When a process submits the Open call, a free descriptor record is found. The

InUse field is set to true, the DeviceType and DeviceNumber fields are initialized (based
on the details of the Open call), the CurrentPosition is set to zero, and the Mode field is
set. The kernel then calls the ‘‘open’’ routine in the upper part of the appropriate device
driver. The index of the open device descriptor is returned to the process so that further
operations it makes on this device can be associated with the current location and
checked against the Mode.

When a process requests a Read, for example, to read 10 bytes from a disk, the
disk driver can calculate which sector in which track contains those bytes. A request for
that entire disk block is submitted to the lower part of the disk driver. When the block
has been read in, the upper part transfers the desired 10 bytes to the address space of the
requesting process and then either unblocks it (if synchronous transfer was specified) or
takes other appropriate action to inform the process that the transfer has completed. If
the request crosses block boundaries, several requests are then made of the lower part of
the device driver.

Writing bytes to a device may also require several successive calls to the lower
part of the appropriate device driver. For example, to write less than a full block to a
disk, the proper block or blocks must first be read in. Then their contents are modified in
accordance with thedetails of the Write call. They are then written back out. Writing to
a magnetic tape is simpler because it is assumed that such a write will destroy the previ-
ous contents. Writing to an otherwise unused disk block is also simpler because there is
no need to preserve previous values.

The process interface 177

The kernel can reduce the amount of physical transput by employing the Cache
Principle. If a process has just read some bytes, the chances are good that the next bytes
on the device will be read next. Instead of repeating the read operation for the entire
block, the device driver can save the block that was read in last and extract the next 10
bytes, for example, when needed. In this case, many calls on the lower part of the device
driver can be avoided. We can also avoid blocking the caller, in keeping with the Hys-
teresis Principle. Therefore, whenever a process requests input, the driver should first
check to see if the desired data block is already in main store. Only if it is not must the
lower part of the device driver be invoked to bring it in. The set of buffers the kernel
keeps in main store in the hope they will be needed again forms a cache. A form of LRU
replacement can be implemented for this cache.

Writing can also take advantage of this cache. It is not necessary to read in a fresh
copy of the block about to be modified if a copy already sits in the cache. After the
modification is performed on the main-store copy, that cache entry should be marked
‘‘dirty.’’ It is not yet necessary to write it back out to the physical device, since it may be
needed again soon. If any process wants to read it in the meantime, the main-store ver-
sion will be used, and this version is up-to-date. Further writes may also affect the same
data; it is not necessary to archive the data until all such writes have finished. The dirty
buffer should be written out when its space is needed by some new buffer or when the
device is idle and may as well be employed in writing it out. This method is known as
write-behind. Write-behind is a typical form oflazy evaluation, in which work is
delayed in the hope that it will not be needed at all. Write-behind makes sense for both
synchronous and asynchronous transput; the operation is considered completed when the
data block is properly modified even if it has not yet been written out.

Write-behind has some dangers. If the operating system should crash (fail unex-
pectedly), data that should have been written to the device may still be in main store, and
it may not be feasible to recover them. For this reason, dirty buffers should periodically
be archived from the cache so that the device is always relatively up-to-date. Database
programs need to be able to force such archiving and to know when it is finished.
Another unfortunate property of write-behind is that device errors cannot be presented to
the process that wants to perform output. If, for example, the process tries to write past
the end of a tape, the physical write command may be issued after the process has started
doing unrelated operations or even after the process has terminated. Presenting this error
to the process is then either very cumbersome or impossible.

The data-block cache can be used to reduce the amount of time processes are
blocked during synchronous read, just as write-behind reduces the amount of blocking
time during synchronous write. Under theread-ahead policy, the device driver brings in
the next data block before the process has made a request that requires it. When the pro-
cess gets to that region of data, the cache will already contain it, so the process will not
be forced to wait. Of course, the process may never want to read from the next block
because it may be performing random accesses or reading only the initial part of the dev-
ice. In these casesread-ahead wastesdevice bandwidth. Therefore, the kernel should
avoid read-ahead ifthe process has recently performed a Position operation, which indi-
cates random-access activity. (Database programs oftenget no benefitfrom read-ahead
because even though they may know exactly which page of a file they need to read next,
the page is often not the ‘‘next’’ one as faras the kernel is concerned,so no read-ahead is
performed.) Read-ahead is a typical form ofeager evaluation, in which work is per-
formed early in the hope that it will be useful.

178 Transput Chapter 5

When the process submits a Close service call, the device driver can archive any
remaining buffers in the cache. The slot in the active device array is then released by
resetting InUse to false.

5.4 Buffer depletion

Since the kernel uses buffers to hold data that are in transit between processes and the
outside world, there is a possibility that these buffers will be depleted. For example, a
process may try to write to a disk faster than the disk can accept information. Eventually,
all the main-store buffers will be full. The process must then be blocked when it tries
another write request.

The overflow situation becomes especially interesting in the case of terminals. Let
us assume that there are ten terminals attached to the computer and ten processes, each
communicating with a terminal. Terminals accept information at a fairly slow rate. This
rate can drop to zero if the user types a ‘‘stop terminal’’ character (typically <control>S),
which is intended to delay further output while the user reads what is currently on the
screen. Programs, in contrast, generally can accept information much faster than a user
can type it in. However, the rate at which a program accepts data may drop if it must cal-
culate some complex function before it is ready for new data. We will allow the user to
type ahead in this case and store input inside the kernel until the process requests it.
Finally, let us assume that characters to be written out or that are typed in are saved in 1-
character buffers in the kernel and that there are only 1000 such buffers. This situation is
depicted in Figure 5.14.

We will start with a straightforward policy: If a process wants to write a character
out, the character is put in a buffer until it can be written. If no buffers are available, the
process is blocked. A character typed by the user is placed in a buffer until the associ-
ated process requests to read it and is also echoed back to the terminal. If no buffers are
available, the character is not echoed; instead, a <control>G (which sounds a beep on
most terminals) is echoed.

Our first problem arises as we try to implement this policy. Let’s assume that all
the buffers are in use and the user types a character. How can we echo <control>G
except by placing the <control>G character in a free buffer and scheduling it for output?
To avoid this sort of traffic jam, we will refuse new characters from the users if we have
fewer than ten buffers left. Then even if every user types a character simultaneously, we
will still have enough buffers to echo the <control>G. We don’t have to worry about a
user typing several characters faster than we can echo <control>G’s because it is not pos-
sible to type faster than the terminal can accept responses from the computer. We also
don’t have to worry that the user might have stopped output and thereby prevented us
from echoing characters: We release the stopped terminal whenever the user types any-
thing other than the stop character itself.

Our next problem is that one user-process interaction can interfere with all the
other users. Let’s assume that one process has tried to write more than 1000 characters
while the terminal is in stop status. All our buffers become full after 1000 characters,
and then we block that process. No other user or process can transmit information
because no buffers are left. It is not right to cause those users and processes to suffer

The process interface 179

10

10

1

1

processesbuffer poolusers

echo
write

read

display

typing

echo
write

read

display

typing

Figure 5.14 Buffers for terminals

because unrelated processes are trying to perform output to a stopped terminal.
One extreme solution is to preallocate all our buffers among the terminals, giving

each terminal 100 characters. Although this policy avoids the starvation situation we had
earlier, it is an inefficient use of buffers. To explain why, we should point out why the
buffers are there in the first place.

��

Buffer Principle��

The purpose of a buffer pool is to smooth out short-term
variations in speed between consumers and producers.

This smoothing prevents needless blocking.���
�
�
�
�
�

�
�
�
�
�
�

In particular, buffer pools allow us to obey the Hysteresis Principle and resist switching
processes during transput operations. If the process is creating output, it is the producer,
and the user (or the terminal) is the consumer. If the user is typing input, the user is the
producer, and the process is the consumer. In the long run, the consumer and the pro-
ducer must run at the same speed because the consumer cannot read more information
than was produced, and the producer cannot get infinitely ahead of the consumer. How-
ever, when a process wants to print 10 characters, it would rather not be blocked after
each character. To avoid this situation, the buffer pool accepts the characters and the
process need not be blocked. The more buffers we have, the more smoothing we can
accomplish. Therefore, restricting each process-user pair to 100 buffers prevents all of
them from making temporary use of the smoothing possible with 1000 buffers.

A reasonable compromise is to give each terminal a small number of private
buffers, say 20. Then 800 buffers are available for whatever application happens to need
them. If only one terminal is currently very active, all 800 extra buffers will be allocated

180 Transput Chapter 5

to that terminal. If all terminals are very active, each one gets at least the 20 private
buffers and can continue to function, although some will have the increased benefit of the
extra buffers.

We still have a problem. Suppose that all the public buffers are in use by terminal
1. Terminal 2 only has its 20 private buffers. If the user on terminal 2 has typed ahead,
all the private buffers may be filled with new input that the process has not yet read. The
process may be running a program that wants to print an answer to the previous query
and then accept a new query. When it tries to print the answer, it blocks because there
are no available buffers. It will never awaken (at least not until some public buffers are
freed) because the private buffers will not be freed until the process reads them, and it
can’t read them because it is blocked. We see that it is necessary to preallocate at least
one buffer for the process to produce into. Similarly, it is necessary to keep at least one
buffer for the user to produce into; otherwise the user may not be able to type the ‘‘halt’’
character at a program that insists on printing at full speed to the terminal.

Here is the moral: It is necessary to preallocate at least one buffer for every pro-
ducer. All the rest may be allocated by need. It is typical to preallocate at least 80
buffers to input from every terminal so that the user can always type ahead at least one
complete line.

6 PERSPECTIVE

To live up to the Beautification Principle, the operating-system designer and implementor
must deal with the most excruciating details of hardware and must turn a bewildering
tangle of complexity into a straightforward, simple, and regular view that a process can
deal with. In carrying out this responsibility, the kernel must satisfy both masters.

Luckily, most devices can be thought of as engines that consume and/or produce
data and accept other specialized requests. This abstract view of devices can be embo-
died in device drivers, which hide the idiosyncrasies of particular devices behind a mask
of uniformity. Device drivers are controlled partly by interrupts and partly by requests
from the rest of the kernel. The rest of the kernel, including such parts as the swapping
manager, make use of these drivers whenever they must deal with devices. The drivers
have responsibility for three areas.

� Efficiency: We saw how the disk driver could employ disk-head scheduling to
improve performance. Similarly, data compression may be used to reduce the
amount of data that must be stored. Data compression may be applied at higher
levels, outside the kernel.

� Reliability: Drivers for unreliable communication lines may employ error detec-
tion, positive acknowledgement, retransmission on timeout, and sequence numbers.
The responsibility for reliability is ultimately in the hands of the applications pro-
gram, but the responsibility for the reliable transmission of individual messages,
which is necessary for efficiency of higher-level protocols, lies in the hands of the
operating system.

Perspective 181

� Security: Encryption may be used to provide secrecy and authentication on non-
local communication. Encryption may be used at any level, not just by the device
driver.

The usual point at which the kernel must deal with devices is when a process
makes a transput request. If the kernel keeps a cache of secondary-store blocks in main
store, it can sometimes bypass dealing with a device. The operating-system designer
must choose among many different styles of transput requests. The process can be given
larger or smaller amounts of control over the way transput is conducted. Recent operat-
ing systems like Unix have successfully championed the policy of a very simple process
interface with an efficient kernel implementation. However, real-time operating systems
tend to require more complex process control over transput.

7 FURTHER READING

The Datapro handbook (Heminway, 1986) has a wealth of information about computers
and devices, with both overview sections and details of particular brands. The text by
Tanenbaum (1981) is a finereference oncommunication devices and the protocols that
are used on them. Disk-head scheduling policies have been investigated by Fuller (1974)
and reviewed by Teorey and Pinkerton (1972). Public-key cryptosystems were first pro-
posed by Diffie and Hellman (1976). One elegant extension is Gifford’s notion of cryp-
tographic sealing (1982).

8 EXERCISES

1. Why is it necessary for the escape character itself to be escaped if it appears in a
message?

2. WhenA and B are sending messages to each other using public-key encryption,
why doesA first apply its own D and thenB’s E? Why not perform these opera-
tions in reverse order?

3. WhenA and B are sending authenticated messages to each other, how does the
recipient know whose E to apply to the message? After all, the recipient doesn’t
know who sent the message until it can read the message, and the message is
inscrutable until it is converted to cleartext.

4. The chief of security at Marble Pillar Stocks wants to use some encryption method
for communication between the main office and the branches. She likes the idea of
the one-time pad because it is provably secure. She likes the idea of RSA because
it has not yet been broken. But the one-time pad has a key-distribution problem,
and RSA is too time-consuming to calculate. She therefore suggests that RSA be

182 Transput Chapter 5

used to transmit keys for the one-time pad. What do you think of this idea? Is it
secure? Is it efficient?

5. Should a recipient of a duplicate message acknowledge it or not?

6. How long would it take to print the contents of a floppy disk on a dot-matrix
printer, assuming that blanks take as longto print asany othercharacter?

7. Compare the FCFS, SSF, Look, and C-Look disk-head scheduling policies by
simulating the following access request list. For each policy, compute the average
and the standard deviation of the time required to service requests. Assume that
the disk starts at track 1; that there are 200 tracks; that a seek takes (20+ 0.1. T)
milliseconds, whereT is the number of tracks of motion; that rotational latency is 8
milliseconds; and that servicing the request itself takes 2 milliseconds.

��

Time (ms) 0 23 25 29 35 45 57 83 88 95
Track 45 132 20 23 198 170 180 78 73 150��
�
�

��
�
�

��
�
�

8. To what extent does the theory of disk-head scheduling apply to magnetic tapes?

9. The text suggests that the main-store cache of device blocks can be managed by an
LRU mechanism. Why is LRU more appropriate here but NUR more appropriate
for page replacement?

10. A program needs to use a circular buffer pool, but the programmer is unsure how
many buffers are needed. The program is expected to output data according to this
repetitive pattern:

������������������������������

Virtual time Number of bytes������������������������������

1 50
2 500
5 1000��������������������������������

�
�
�
�
�

��
�
�
�
�
�

The program will go through 100 iterations, each taking 5 seconds, before finish-
ing. Assume that buffers are 100 bytes long and that the device driver responsible
for the output can transfer 4 buffers per second. For a buffer pool of 1, 2, 3, 4, and
5 buffers, how long will it take for the program to finish (a) the first iteration, (b)
the second iteration, and (c) the last iteration? By ‘‘finishing’’ we mean placing
the output data in buffers; the device driver is then responsible for transferring the
data to the device.

11. Suggest guidelines to programmers for choosing the number of buffers they should
allocate in circular buffer pools.

12. The text suggests that a process using circular buffer pools should execute a Wait
service call to acquire a buffer and submit a Write (for output buffers) or
FreeBuffer (for input buffers) to release the buffer. Suggest ways in which these
calls can be safely avoided and comment on the efficiency of your solution. (Hint:
Consider tricks with virtual store.)

Exercises 183

13. The text describes the buffer overflow problem in the case of a fixed number of
producers and consumers. How does the problem change if we allow new
producer-consumer pairs tobe created?

14. Suggest some disk-head scheduling policies if the disk pack has two independent
arms, each of which can be positioned on any track.

15. Write a simulation program that compares disk-head scheduling algorithms.

16. Would the banker’s algorithm be a good substitute for the policy shown in the text
for managing conflicting requests onthe character-bufferpool for terminals?

17. The Position field in a circular input buffer pool can be used either by the kernel to
indicate from where it got the data or by the process to indicate from where it
wants the kernel to draw data. There are advantages and disadvantages of both
meanings. Describe them.

18. Assume that an operating system allows processes to execute channel programs
and provides virtual tracks to processes. What sort of translation is necessary if
virtual tracks do not correspond one to one with physical tracks?

184 Transput Chapter 5

chapter 6

FILE STRUCTURES

In Chapter 5, we described device control through the service calls Open, Close, Position,
Read, Write, and Control. We also saw that files can serve as a unifying metaphor for
devices. In this chapter, we will look more carefully at files as objects in their own right.
We will refer to the operating-system module that controls file access as thefile
manager. In Figure 3.23, it would be depicted as a separate part of the kernel. When a
process makes a file-related service call, the envelope task calls the file manager to deal
with it. In turn, the file manager may make several requests of the disk driver in order to
complete its job. For example, a request to open a file might turn into several requests to
read disk blocks to find where the file is on the disk.

We define afile as a named collection of data. Once created, a file remains until it
is destroyed, which can be seconds, days, or years later. The data in a file might be writ-
ten by one process and later read by the same or different processes. We will also allow
the data in files to be appended, modified, or completely overwritten. In a sense, files are
an extension of the virtual store of a process. However, their continued existence after
the termination of that process and their availability to other processes makes them par-
ticularly useful for long-term storage of results. Files may be stored on practically any
read/write medium; disk storage is the most common, so we will concentrate on that.

Our examination of files is divided into two major parts, the virtual and the physi-
cal. Files are abstractions built according to the Beautification Principle, both hiding and
enhancing the underlying physical reality. The virtual notion of a file includes how it is
named, how it is protected from unwanted access, its internal structure, how it can be
recovered after accidental destruction, and how it behaves when more than one process
wants to use it at the same time. Files are used for a wide variety of purposes, and their
virtual forms depend on their purposes. Some operating systems provide different sorts
of files with different properties for different applications. Other operating systems
attempt to provide one standard sort of file with properties powerful enough so that
almost all applications can use it satisfactorily. For example, if a file is used only by the
process that creates it, there may be no need to give that file a name. Any file that is
meant to be preserved after its creator terminates must have a name so that it can be

185

distinguished from all other files currently in storage.
The physical representation of a file, usually on disk, must efficiently satisfy the

requirements imposed by the chosen virtual form. We will discuss allocation on the disk,
internal file structures, directories of files, and support for simultaneous use.

1 NAMING STRUCTURE OF FILES

The purpose of a file name is to allow users and programs to refer to a particular file.
File names can also relate to the contents or the intended use of a file. For example, a
user might tell from the name of the file whether it contains a program in Fortran or Pas-
cal. Every operating system has conventions for names. These conventions usually
divide file names into parts that we will callcomponents.

Some operating systems (like Exec-8 for the Univac 1100) require every file name
to have exactly three components and each component to have an exact number of char-
acters. Others (like recent versions of Unix) allow any number of components and place
no restriction on the number of characters. A fairly typical arrangement (found in Tops-
10 for the DEC PDP-10 and in CP/M for many microcomputers) is to allow two com-
ponents. The first component has six or eight characters and the second has three. The
first component may be picked at the whim of the programmer to designate the purpose
for which the file has been written. The second component follows conventions that tell
what sort of file it is.

For example, suppose that the programmer wishes to build a Modula program that
has two modules. The program simulates an airport. The modules are Runway and
Plane. The source program could be stored in files calledrunway.mod and
plane.mod, respectively. The dot separates the components, and themod component
indicates that the files are Modula source files. When the compiler has created object
files, they might be calledrunway.obj and plane.obj. Once the linker has com-
bined these two files, the result might be an executable program called
simulate.run. (If we are limited to six characters, we might be forced to call the file
simlat.run. One needs many more characters to avoid feeling constrained.) The
input data for the program might be stored insimulate.dat, and the output created
by the program might be calledsimulate.out. If the program fails during execu-
tion, a copy of its address space might be saved for later debugging in a file called
simulate.spc.

Files are retrieved by full or partial specification of their file names. A partial
specification omits some of the components. It is very common to use the * character as
a ‘‘wild-card’’ or ‘‘don’t care’’ entry in a file name. For example,*.obj refers to all
files that haveobj as their second component. The wild-card convention is usually not
interpreted by the file manager. Instead, programs that deal with files, such as the com-
mand interpreter (discussed in Chapter 7), convert a name with wild cards into a list of
files.

In addition to listing all files with a particular component, a user often wishes to
see all files that pertain to some project or that belong to the same person. Various tech-
niques are available for imposing selective views on the file structure. All revolve

186 File Structures Chapter 6

around the notion of adirectory. A directory is a list of pairs that can be searched by the
first element, called thekey, to derive the second. In the case of files, a directory is a list
of file names (the key) along with other information about the file, such as who owns it,
how long it is, who is allowed to access it, or where it is stored on the physical disk.
Directories are often stored as files themselves, but these files are treated specially by the
file manager.

1.1 One-level (flat) directories

Some operating systems use one master directory for all files. Since all file names appear
in a single directory, we say the directory has onelevel. Since all file names are searched
by the same method, we say the directory isflat. Such a directory structure is shown in
Figure 6.1. This figure shows file names stored in a master directory, which then points
to where the files are actually stored.

A flat directory structure forbids two files to have the same name. This restriction
can make it difficult for users to invent reasonable names for files. However, if there are
enough components in the name, there is no difficulty. For example, the Univac Exec-8
operating system has a flat directory structure, but each file name has three components.
The first component is, by default, the owner’s personal identifying number. Most files
are created with only two user-selected components, and two users may choose the same
names. In fact, default selections are available for those two components as well; these
defaults lead to temporary files that are deleted at the end of the day or when the session
ends.

Master directory

software.fortran.run

smith.simulate.fortran

smith.simulate.run

smith.chapter1.text

smith.mail.text

smith.slide1.text

troy.JIR.text

files

Figure 6.1 Flat directory

Naming structure of files 187

A flat directory structure has some drawbacks. The entire directory must be
searched to find a file. Clever data structures to represent the directory can speed up this
search. For example, a linear directory can be improved by reordering it after every
search to place the searched name at the start. The directory can also be represented as a
binary search tree or as a hash table. Still, generating a list of files sharing some charac-
teristic (like owner) will require an exhaustive search. Likewise, wild-card searches must
examine the entire master directory.

A flat directory structure is fine for small disks that can only hold a limited number
of files. Personal computers often use flat structures for floppy disks, for example. The
CP/M operating system follows this design.

1.2 Two-level directories

A two-level directory structure is used in the Tops-10 operating system. Every account is
given a private directory, known as a user file directory. A user who wants to separate
various projects can use several accounts. Now files have more complexfull names: the
name of the user file directory followed by the name of the file within that directory. The
latter part of the file name is called thelocal name.

Account names may be strings of integers, but more commonly, they are strings of
characters that describe the user (and perhaps the project). An account used by a student,
Mary Smith, to prepare her doctoral dissertation might be calledsmith.thesis.
Let’s say that Mary has been writing the simulation program described earlier and has
built files such asrunway.mod, plane.mod, and simulate.run. The name for
these files would be

/smith.thesis/runway.mod
/smith.thesis/plane.mod
/smith.thesis/simulate.run

and so on. We are using the slash character (/) to separate the account name (which we
are also using as a directory name) from the file name. Of course, each operating system
will have its own syntax for this separation.

The name used to refer to a file is independent of who is referring to the file. Both
Mary and her adviser, Professor Helen Troy, use the same names for the same files. For
this reason, we say that the names we have shown areabsolute.

However, Mary might prefer a shorter name for her files. The name
runway.mod is certainly easier to type thansmith.thesis/runway.mod. We
would like to assume the first part of the name by default. The rest of the name will be
understoodrelative to the assumed first part. To distinguish absolute from relative file
names, we will adopt a convention that absolute names begin with /, whereas relative
names do not. Local names are file names relative to the directory in which the file
resides.

To establish the meaning of relative names, a process might tell the file manager
what the default part of the name should be. We will call this default theworking direc-
tory. In general, we will provide service calls for all the facilities we would like to make
available to the user. As we will see in Chapter 7, these service calls can be used directly
by processes or indirectly by users interacting with processes.

188 File Structures Chapter 6

� SetWorkingDirectory(new directory). This call sets the working directory for
the process to the new directory (if it exists). There could be a special value for
‘‘new directory’’ that means the user’s own directory.

When Mary logs on (interactively) or starts a job (in batch), the processes that work on
her behalf will usesmith.thesis as their working directory.

A two-level scheme is useful even if there is only one user. It is found on many
computers to indicate which disk drive or which other device holds a file, even if a flat
structure is used within devices. For example, a personal computer that has both a hard
disk and a floppy disk might have a command like the following:

COPY /HardDisk/project.mod TO /Floppy/save1.mod

The name of the device acts as a directory. When the working directory is set to Hard-
Disk, relative names suffice for files stored on the hard disk, but files on the floppy need
absolute names.

1.3 Aliases and indirect files

Two different directories may need to share a file that doesn’t belong naturally to either
one exclusively. For example, Mary Smith may wish to access her computer-mail file
whether she is using accountsmith.thesis or smith.coursework. She would
prefer to avoid placing the mail file in one directory or the other because that would force
her to use a full name on some occasions. The Multics and Unix operating systems allow
the very same file to be present in several directories. We will say that the file has
severalaliases. To build an alias for a file, a process may use the following service call:

� Alias(old name, new name). This call builds a new directory entry that refers to
the same file as the old name. Both names may be absolute or relative. Relative
names are understood with respect to the working directory. The call fails if the
old file does not exist or the new name cannot be used (the new name is already in
use, the caller does not have necessary permissions, or the physical implementation
of files cannot arrange for the alias).

Aliases for the same file are not independent copies. There is only one file, and if it is
modified under any alias, the file under other aliases is likewise changed.

Figure 6.2 shows the same files as before, but now Mary Smith has two accounts,
one for her coursework and another for her thesis. She has placed an alias for her mail
file in both accounts to make it easy to access. Helen Troy’s account is also shown, as is
a software directory for such programs as the Fortran compiler. The dashed lines indi-
cate an indirect file, which we will describe shortly. If the working directory is
smith.courses, the following files are accessible:

Naming structure of files 189

smith.text

Master directory files

software

smith.thesis

smith.courses

troy

fortran.run

simulate.for

simulate.run

chapter1.text

mail

mail

slide1.text

JIR.text

user file directories

/smith.thesis/chapter1.text

Figure 6.2 Two-level directory

File Also called

slide1.text /smith.courses/slide1.text
mail /smith.courses/mail

/smith.thesis/mail
/smith.thesis/simulate.for
/smith.thesis/simulate.run
/smith.thesis/chapter1.text /troy/smith.text
/troy/JIR.text
/software/fortran.run

Aliases raise several issues pertaining to naming, deletion and accounting.

� Naming: A file with several aliases no longer seems to have a ‘‘true’’ name. Is the
mail file really /smith.courses/mail or /smith.thesis/mail? We
can increase the confusion by giving the same file different local names in the two
directories, such asmail and letters. We could even put the two aliases in
the same directory, as long as the local names are different.

If we are willing to distinguish files from names, as our figures show, we
can find this situation useful. A file may have multiple names. For example, every
student in a class might be expected to build a file calledproject.mod. The
teacher may wish to build an alias for each of these files in the teacher’s directory.
The local name for each file in the teacher’s directory could refer to the student:
brown.mod, asaithambi.mod, and mogolescu.mod.

� Deletion: If the file is deleted under one of its aliases, should it disappear under all
aliases? If so, then it is necessary to find all the directories that contain aliases for
the deleted file and remove those aliases as well. To make this search efficient, all

190 File Structures Chapter 6

the aliases of a file could be listed in a common place, perhaps along with the con-
tents of the file itself.

A nice alternative is to allow the file to remain intact until the last alias is
deleted. Areference countcan be stored with the file to indicate how many aliases
it has. Most files have just one alias,so they havereference count1. Files that
have been placed in several directories (or several times in the same directory)
have a higherreferencecount. Making a new alias raises the count. Deleting a file
removes its entry in a directory, reduces its count, and preserves the file if the
count is not yet zero. If the count is zero, the file’s data can be discarded and its
disk space reclaimed. A user who wants to delete a file completely must know all
its aliases.

� Accounting: Many operating systems charge users in proportion to how much disk
space (in sectors, for example) each user’s files are occupying at the end of each
day. Who should pay for the disk space occupied by a file that has several aliases?
We might charge the ‘‘owner’’ of the file, that is, the user who first created it.
Ownership would be stored with the file, not with the directory entry, to avoid hav-
ing several owners of the same file. However, this policy can be unfair. A student,
Patish Shamir, has built the fileproject.mod. The instructor has made an alias
for it, called shamir.mod. Patish is paying for the disk space. Now Patish
deletes the file at the end of the semester. Since the instructor never gets around to
deleting shamir.mod, it remains. Patish is still paying for the file but has no
way to delete it, since the instructor’s files are protected from him. In fact, Patish
may graduate and lose his account on the machine. There is nobody left to bill for
this file.

A different accounting policy would be to charge each user for the files in
that user’s directory in proportion to the percentage of the file that is in the direc-
tory. For example, a file with only one name is entirely in its directory. A file with
two aliases is charged half to one directory and half to the other. Patish Shamir’s
project file is charged half to him and half to the instructor until Patish deletes it,
after which it is charged entirely to the instructor. Even this policy is not com-
pletely fair. Before Patish deletes the file, he might (maliciously) add an enormous
amount of data to it. The instructor is left paying for the whole file and has no idea
that Patish was so unkind.

If the file structures allow aliasing, moving a file from one directory to another can
be very inexpensive and independent of the length of the file. Instead of copying the file
to a new name, the new name can be made an alias for the file, and then the file can be
deleted under the old name. Since there is stillat least one outstandingreference toit, the
file is not deleted. If aliasing is not allowed, inexpensive file movement can still be pro-
vided by a service call.

� Move(old name, new name). This call has the same effect as Alias, except that
it removes the old name. This call is provided only if Alias is not.

BSD4.2 Unix permits another, looser form of aliasing. Anindirect file is a file
that contains nothing but the name (either absolute or relative) of another file.

� Indirect(old name, new name). This call builds a new indirect file for the old
file.

Naming structure of files 191

Figure 6.2 shows an indirect file,/troy/smith.text, which refers to the file
/smith.thesis/chapter1.text. Any attempt to open the indirect file will result
in opening the other one instead. (Relative names in an indirect file may be understood
with respect to the working directory of the process or with respect to the directory where
the indirect file is stored. Unix chooses the second alternative.) A chain of indirect files
is meaningful, but to prevent getting lost in cycles, the file manager should refuse to
accept a chain longer than five or so indirect files.

Indirect files raise the same issues of deletion and accounting as aliases.

� Deletion: Deleting an indirect file A has no effect on the file B it refers to. Delet-
ing a file B referred to by an indirect file A makes A useless. It is then impossible
to open A, but A still remains in its directory. If a file named B is later created, A
is again usable.

� Accounting: If an indirect file A refers to B, the owner of A should pay for the
(minuscule) amount of disk storage A occupies. The owner of B should pay for all
of B. The owner of B can always avoid payment by deleting the file; this action
renders the indirect file A worthless. If the owner of A wants to be sure that B
can’t be deleted, that owner should have to pay for part of B by making a regular
alias.

Aliases and indirect files form interconnections by means of entries in directory
structures. VMS provideslogical names through data structures in the file manager to
serve a similar purpose. Whenever a relative file name is presented to the file manager, it
checks the first part of the name against several translation tables. The global table
applies to all processes, the group table applies to all processes within a group, and each
process has two private tables, one of which is inherited by its children. System calls are
available to manipulate these tables; modifying the first two requires special privilege.
Each table entry gives a logical name and its translation. The same logical name may be
translated differently by different tables, and one name may have several translations in
the same table. Each of these translations is tried in a standard order (recursively, since
the translation may itself be a logical name) until a name that corresponds to an actual
file is found. Logical names can be used to point to directories where standard software
is kept. A user can then refer tosoftware/editor.run, for example, without
needing to know where the software directory is. People testing new versions can make
a group logical name forsoftware that points to a different directory.

We could have introduced aliases and indirect files when we were discussing flat
directory structures, but they are much more important when full names become cumber-
some, as they are with two levels. The extension from two levels to an arbitrary number
of levels is the next step.

1.4 Hierarchical directories

It is not hard to generalize the two-level directory structure into an arbitrary number of
layers. We started in that direction when we gave Mary Smith two different accounts,
one for her thesis work and one for her course work. It would have been more helpful to

192 File Structures Chapter 6

give her one account and let her subdivide her files between the thesis and course pro-
jects. The course files might themselves be divided among the various courses she is tak-
ing. At a higher level, the files on the computer may be divided between those needed by
the operating system (like source files for the kernel, documentation on the text editor, or
software such as the Fortran compiler) and those needed by users (letters, programs for
projects, documentation, mail).

A tree is an elegant arrangement for these divisions. We distinguish two types of
nodes in the tree: directories and ordinary files. A directory can havechildren (sub-
nodes), a non-directory cannot. Directories may be empty. Figure 6.3 shows how the
files we have been discussing might be placed into a hierarchical structure. As you can
see, files are not restricted to lie at a particular level in the hierarchy. The top few levels
of the directory structure tend to have a lot of directories, but ordinary files can reside
there, too.

In a hierarchical directory structure, absolute names are often clumsy. They are
still necessary because we need a way to distinguish a mail file in Mary Smith’s directory
from a mail file in Helen Troy’s directory. We build the absolute name of a file by start-
ing at the root of the tree and naming all the directories on the path to that file. The last
part of the full name is the local name of the file. We will separate the intermediate
names by the/ symbol, as before. The files in Figure 6.3 have these full names:

papers

courses

thesis

mail

troy

smith

fortran.runutilities

users

JIR.text

slide1.text

chapter1.text

simulate.run

simulate.for

software

smith.text

/users/smith/thesis/chapter1.text

root

Figure 6.3 A hierarchical directory structure

Naming structure of files 193

/ (the root directory)
/software (a directory)
/software/utilities (a directory)
/software/utilities/fortran.run (a file)
/users (a directory)
/users/smith (a directory)
/users/smith/mail (a file)
/users/smith/thesis (a directory)
/users/smith/thesis/simulate.for (a file)
/users/smith/thesis/simulate.run (a file)
/users/smith/thesis/chapter1.text (a file)
/users/smith/courses (a directory)
/users/smith/courses/slide1.text (a file)
/user/troy (a directory)
/user/troy/papers (a directory)
/user/troy/papers/JIR.text (a file)
/user/troy/papers/smith.text (an indirect file)

As before, we have used an initial/ to indicate that these are absolute names. Names
relative to a working directory can be much simpler. We assume that when Mary Smith
logs onto the computer, her working directory is set to/users/smith. At this point,
she can name the following files with relative names.

mail (a file)
thesis (a directory)
thesis/simulate.for (a file)
thesis/simulate.run (a file)
thesis/chapter1.text (a file)
courses (a directory)
courses/slide1.text (a file)

When she wants to work on her thesis, she can change the working directory tothesis
(using its relative name) or/users/smith/thesis (using its absolute name).
What if she wants to copy herslide1.text file from her courses directory to her
thesis directory? She could submit a command of the following form.

COPY /users/smith/courses/slide1.text
TO /users/smith/thesis/slide1.text

By setting the working directory to/users/smith, she could reduce this command to
the following.

COPY courses/slide1.text
TO thesis/slide1.text

Aliases can also reduce the burden of long names. Files that are heavily used may
have aliases in several directories, so local names usually suffice. Likewise, indirect files
may specify shared files without worrying about accidentally retaining a copy after they
are deleted.

Let us imagine that the command interpreter has an interactive LIST command that
lists the files in any directory. By grouping related files, the file structure makes such a
command both useful and efficient. Directories seldom grow to hold more than about 20
or so files. After that point, the user is likely to partition the files into several subdirec-
tories.

How would we list the contents of the working directory? We could tell the LIST
command the absolute name of the working directory, but absolute names are clumsy.
We could tell LIST the relative name for the working directory, but we have no such
name. We could let LIST assume that if we give it no argument at all, the working

194 File Structures Chapter 6

directory is implied, but the LIST program would still need to open the working direc-
tory, and it has no name for it. We will therefore adopt a convention that% as a relative
file name refers to the working directory. Then

LIST %

will list the working directory.
Another nice feature we can add is a relative name that refers to theparent direc-

tory, the one right above the working directory in the tree. We will useˆ for this pur-
pose. If the working directory iscourses, then Mary could use the command

COPY slide1.text TO ˆ/thesis/slide1.text .

We might as well generalize the notion of parent to include any number of levels up the
tree. To move the same file into her advisor’s account, Mary could submit the following
command.

COPY slide1.text TO ˆ/ˆ/troy/slide1.text

We see thatˆ is a local file name that refers to the parent directory, and it may be used
in arbitrary ways in a full file name. Likewise, we treat% as a local file name in each
directory that refers to that directory. Repeated uses of% in a file name are not as useful
as repeated uses of̂.

The easiest way to implement these special file names is to place these two names
in every directory as aliases to that directory and to its parent. The root directory does
not need a fileˆ.

Setting up a directory is a job for the file manager because directories must follow
consistency rules to prevent the file structure from becoming confused. We provide a
service call for this purpose.

� MakeDirectory(new name). This call builds a new directory with the given
name. The new name may be either absolute or relative to the working directory.
The new directory is initialized to contain thê and % files, which are aliases to
its parent and itself, respectively. This call fails if the prefix of the new name (that
is, all but the last part) is not a directory, if the proposed directory already exists, or
if the caller does not have permission to create this directory.

2 ACCESS CONTROL

Files are used for long-term storage of information. Much information is either private
(and should be secret) or at least important (and should be protected against
modification). Therefore, the rights of users or their processes to access files must be res-
tricted. Yet files are an indispensible means of sharing information, so, the restrictions
should be selective.

Restricted access with the possibility of sharing is not a new topic for us. We
encountered it in Chapter 3 when we were discussing main-store management. There
were occasions when two processes would want to share a segment of information. We
will now present a more formal discussion of access control in general.

Access control 195

2.1 A formal model of access control

Our formal model deals withsubjects, which are the entities that wish to access data, and
objects, which are the units of data that may be accessed. For our purposes, the subjects
are users (or processes acting on their behalf). Subjects can be represented byuser
identifiers, which are associated with all the processes running on behalf of a particular
user. The objects we will deal with are entire files. We will not deal with access control
on a finer grain than entire files, although database applications often impose controls on
the record or byte level of granularity. We will allow a process to access either a whole
file or none of it.

The formal model of subjects and objects can be applied to other situations besides
file systems. For example, one can describe the scope of identifiers in a Pascal program
by considering procedures as subjects and identifiers as objects. As a second example,
one can describe the interplay of a community of cooperating processes by letting
processes be both subjects and objects.

In each of these subject-object worlds, individual objects may have severalaccess
modes. Files can be read or written. (A more complete list will be presented shortly.)
Identifiers can be invoked (if they are procedures), read or written (if they are variables),
only read (if they are constants), or applied to new declarations (if they are types).
Cooperating processes can be asked to perform different tasks, depending on the program
that the process is running.

Our formal access model will allow us to specify which access modes are allowed
between each subject and each object. In the file world, for example, Mary Smith may
not care who looks at her histology notes (mode = read) as long as only she can modify
them (mode = write). But she doesn’t want anyone else even to look at her thesis, except
possibly her adviser. Her mail file should be available for people to add messages (mode
= append) but not to overwrite in the middle and certainly not to inspect.

We will therefore determine whether to allow a given access by considering three
factors:

� the subject
� the object
� the access mode.

To perform an access of a given mode, the subject must have the appropriateaccess
right. We will use the termprivilege as a synonym for ‘‘access right.’’ For files, the
access modes that might be provided include the following.

� Read: Derive information from the object.
� Write: Initialize or modify the information in the object.
� Append: Add new information to the object.
� Execute: Treat the object as a load image.
� Delete: Remove the object.
� Privilege: Modify the rights that subjects have to the object.
� SetOwner: Establish which subject owns the object.

196 File Structures Chapter 6

Execute privilege is different from Read privilege. One way to distinguish programs
from data files is by granting Execute privilege over programs. In addition, proprietary
software is often licensed by the manufacturer to be used but not to be copied. In order
to copy a file, a subject must be able to read it. Separating the Execute and the Read
privileges lets us prohibit copying but not execution.

The Privilege privilege allows a subject to grant new privileges or revoke old
privileges. It is rarely granted to any subject but the owner because it is so powerful.
The SetOwner privilege is even more powerful and may be reserved for administrators.

We can represent the state of all access rights by constructing anaccess matrix, as
shown in Figure 6.4. Each row in the access matrix represents one subject, and each
column represents one object. The subjects are users, and the objects are files. The
information stored in the entry for a given row and column is the list of privileges that
subject has over that object. Figure 6.4 only uses the Read, Write, Append, Delete, and
Execute privileges and abbreviates each to one letter.

All the users in Figure 6.4 may read the news file, and all may execute the editor
file. Marduk is allowed to read or write any file. Fred may read, write, or delete his own
mail file. Many other users may append to that mail file but not read it. Mottl isn’t even
allowed to append to Fred’s mail file. Ramon and Cheri shareletters/love.text.
Ramon may read and write this file, and Cheri may read it and delete it. Kealoha may
read, write, and delete herprog.text file, and she has allowed Murali to read it as
well.

The access matrix is purely a logical construct that we can use to reason about the
access control situation. It would be unreasonable to store the matrix in one piece, either
in main store or on secondary store, because it is so large. However, we can divide it up
and store it in pieces.

fred

murali

ramon

cheri

lotta

mottl

marduk

kealoha

mail news love.text editor prog.text

RWD

A

A

A

A

A

RWD RWD RWD RWD

R

R

R

R

R

R

R

RW

RD

E

E

E

E

E

E

E RWD

R

RWED

objects

subjects

fred/ letters/

Figure 6.4 An access matrix

Access control 197

Whenever a process attempts to access a file, the file manager can refer to the
access matrix (however it is stored) to validate the access. In keeping with the Cache
Principle, the file manager might check for privileges only when the file is opened. We
saw in Chapter 5 that a process indicates its intent when it opens a device. Similarly,
when a process uses the Open service call to access a file, it indicates the sort of access it
intends. At this point the file manager checks that the access meets the restrictions in the
access matrix. After the file is opened, the only check that needs to be made on every
access is that the access matches the declared intent. One effect of this design is that
modifications to the access matrix while files are open will not affect processes that
already have the file open.

2.2 Capability lists

If we partition the access matrix into separate rows, we have all the information for one
subject together. We might store that information in a data structure associated with the
subject. This sort of data structure is called acapability list, because it lists all the capa-
bilities that a subject has. Capability lists associated with the access matrix of Figure 6.4
are pictured in Figure 6.5. For our file example, we might keep a capability list of all the
files that any user may access in a special ‘‘capability file’’ in the user’s logon directory.
When a process tries to open a file, the file manager can check the appropriate capability
list and make sure that the file is listed with the necessary privilege.

RER

RWED

RWDE

E

E

E

E

E

RD

RW

R

R

R

R

R

R

RWDRWDRWDRWD

A

A

A

A

A

RWD

prog.texteditorlove.text
letters/

newsmail
fred/

kealoha

marduk

mottl

lotta

cheri

ramon

murali

fred

Figure 6.5 Capability lists from Figure 6.4

198 File Structures Chapter 6

This arrangement is awkward for several reasons:

� If each capability list has an entry for all files, many entries will indicate that no
access is allowed. This waste of space can be eliminated by listing only files over
which the subject has privileges.

� The set of files accessible by one user may be very large. It can be expensive for
the file manager to check that a particular file is listed in a capability list. In partic-
ular, privileged personnel responsible for maintaining the computer installation are
likely to have very long capability lists.

� When a new user is granted access to the computer, an initial capability list must
be generated for that new subject. It is not at all clear which files should be on the
initial list.

2.3 Access lists

The other obvious way to partition the access matrix is by columns. Each piece
corresponds to a particular object and lists all subjects and their privileges over that
object. Such a piece is called anaccess list. The access lists corresponding to our access
matrix are shown in Figure 6.6. The access list for a file might as well be stored with the

RER

RWED

RWDE

E

E

E

E

E

RD

RW

R

R

R

R

R

R

RWDRWDRWDRWD

A

A

A

A

A

RWD

prog.texteditorlove.text
letters/

newsmail
fred/

kealoha

marduk

mottl

lotta

cheri

ramon

murali

fred

Figure 6.6 Access lists from Figure 6.4

Access control 199

file, either in the directory entry for it or as part of the file itself. (We will return to this
choice soon.) When a subject opens a file, the file manager checks that the subject is
listed in the access list for the file and has the necessary privileges.

Once again, this alternative has awkward features. The set of all subjects is likely
to be quite large, and many subjects will have identical privileges over the object. It is
convenient to group subjects into classes. Each subject carries both a user identifier and
a group identifier. All members of the same group can be given the same privileges for
the object. The few subjects that don’t fit neatly into a class can be dealt with separately.
Many operating systems follow this approach. They partition subjects into four classes:

� Owner of the file
� Users in the same group as the owner
� Other users
� Utility programs that periodically back up disk storage onto tape. (We discuss file

dumps later in this chapter.)

For example, Mary might set the access list forslide1.text to

self read, write
group read
world read

We assume that Professor Troy, Mary’s adviser, is a member of her group. The thesis
chapter, chapter1.text, would have the following access list:

self read, write
group read
world no access

Finally, her mail file would have the following access list:

self read, write
group append
world append

Multics allows the access list to contain individual user names as well as larger group-
ings. If Mary belongs to the same group as all of Professor Troy’s students, she may not
want to grant Read privilege overchapter1.text to the entire group. Instead, she
might set the access list like this:

200 File Structures Chapter 6

self read, write
group no access
world no access
HelenTroy read

The file manager permits any access that is allowed by at least one entry in the object’s
access list. (Actually, Multics denies access if the first applicable entry on the list denies
it, even if a later one allows it.)

Whenever a subject creates a new object, it is necessary to initialize the access list.
The subject might be required to provide an access list at the time the object is created.
Alternatively, a default access list may be supplied by the file manager in the hope that it
will be adequate for most objects. For example,

self read, write
group read
world no access

is a reasonable default setting. The default may be customized if each user indicates
what privileges arenot to be granted automatically to other subjects. For example, the
default setting just shown could be represented as follows:

self unlimited
group deny: write, append, execute, delete
world deny: read, write, append, execute, delete

If Mary is more trusting, she could change this customization as follows:

self unlimited
group deny: append, execute, delete
world deny: write, append, execute, delete

When a process creates a file on behalf of Mary, it can specify what permissions to grant
to each class of subjects. The file manager will then reduce these permissions in accor-
dance with the customized default. It also provides a service call that allows Mary to
modify the access list, possibly to add a special entry for her professor or remove Read
access from the world. Such a service call may look like this:

� ChangePrivileges(file name, new permissions). This call establishes the per-
missions on the given file. The format of the ‘‘new permissions’’ parameter
depends on the particular operating system. Typically, this parameter is a string of
bits. Each bit position indicates some form of access privilege for some user class.
If the bit is on, the privilege is granted. This call fails if the caller does not have
the Privilege privilege for this file or if the file does not exist.

Access control 201

One simple form of access list is to associate one or more passwords with each file.
Passwords define an access list not by explicitly naming subjects but by stipulating a cri-
terion that subjects must meet. For example, the Exec-8 operating system uses read and
write passwords to restrict read and write access to files. Files without passwords are
public.

2.4 Directories and access control

So far we have been discussing access control on a file-by-file basis. If the operating sys-
tem provides a hierarchical directory structure, directories are themselves files. Access
rights for those directories can be used to control access to the files in the directories and
allow greater use of the default mechanism outlined previously. We will adopt the fol-
lowing access rule.

���

Access rule���

A file may be accessed by a subject only if
the subject has the appropriate access rights

for all the directories in the absolute name of the file.��
�
�
�
�
�

�
�
�
�
�
�

For Mary to keep outsiders from reading her thesis, she need not protect each file within
the thesis directory separately. Instead, she can restrict that directory itself from
being read.

Directories have somewhat different operations from ordinary files. We could
invent a new set of permission types for directories, but for the sake of uniformity, we
will use the same permissions that we use for ordinary files and give them slightly dif-
ferent meanings:

� Read: Determine the names of the files in the directory.
� Write: Modify local file names, add and delete files. However, it isnot allowed to

open the directory for writing. The only way to modify the directory is by service
calls.

� Append: Add new files.
� Execute: Open files in this directory.
� Delete: Remove this directory.
� Privilege: Modify the rights that subjects have to the directory.
� SetOwner: Establish which subject owns the directory.

Both Delete privilege for a file and Write privilege for its directory allow a subject to
delete that file. The operating system can be designed without a Delete privilege, or the
file manager can require that a subject hold both privileges before allowing it to delete a
file. A process with Read but not Execute privilege over a directory can determine what
files are in the directory but cannot open any of those files. A process with Execute but
not Read privilege can open files in the directory if it knows their names, but it cannot
discover their names by reading the directory. If this subtle distinction is not important,

202 File Structures Chapter 6

Execute privilege might be ignored for directories.
Our access rule requires that when a process opens a file, the file manager must

check privileges in all the directories in the path between the root of the file structure and
that file. The process must have Read (and perhaps Execute) privilege in all of them. As
we mentioned earlier, this check might be performed only when the process first opens
the file. If permissions are later restricted somewhere in that path, the process is not
prevented from continuing the access it is making.

Our access rule has some strange consequences. Consider Figure 6.7. Assume
that the working directory for process X is/a/b/c/d (directory 6 in the figure). After
X establishes this working directory, the owner changes the permissions to prevent X
from reading or executing/a/b (directory 3). According to the policy that was enunci-
ated earlier, X should not be allowed to open files 11, 12, and 13, because the path from
the root (directory 1) to those files is no longer free of impediment. However, X can
refer to those files by giving a relative name (such ase) from the current working direc-
tory 6. Since the relative name does not refer to directory 3, the file manager might allow
access. It could still prevent access by expanding all relative names to full names. Alter-
natively, we can modify our access rule as follows:

13

12

11

10

9

6

54

87

3

21

g

f

e

j

i

d

hc

km

ba

Figure 6.7 A sample directory structure

Access control 203

���

Access rule (modified)���

A file may be accessed under a given name by a subject
only if the subject has the appropriate access rights
for all the directories in the given name of the file.��

�
�
�
�
�

�
�
�
�
�
�

In particular, i (file 9) may be accessed under the nameˆ/h/i, since that path does
not use any prohibited files, but it must not be called/a/b/c/h/i because that path
goes through/a/b. Similarly, m (file 7) may be called/a/m, but it must not be
called ˆ/ˆ/ˆ/m becauseˆ/ˆ (directory 3) is inaccessible.

2.5 Aliases and indirect files

The accessibility of a file depends on what the file is called, as we have just seen. All the
intermediate files between the working directory (for relative names) or the root (for
absolute names) must be accessible. If a single file has several aliases, they may differ in
accessibility, since the intermediate files may be different. However, after all the inter-
mediate directories have been successfully passed, the subject must still have the neces-
sary privileges over the file itself.

If all directories grant Execute privilege, can a subject be granted access to some
file but denied access to the same file under a different alias? The answer depends on
whether privileges are associated with a file or with a name. If they are associated with
the file, they are not stored in the directory (since several directory entries in several
directories may all refer to the same file). In this case, the alias chosen for the file does
not influence its accessibility. This is the design choice favored by Unix. If privileges
are associated with a name, they might as well be stored in the directory. In this case, the
alias chosen can determine accessibility.

Indirect files are different. Consider Figure 6.8. Assume that the working

7

6

54

/a/c

/a/c/e

e

321

f

d

c

ba

Figure 6.8 A directory structure with indirect files

204 File Structures Chapter 6

directory is /a/b (directory 3). To successfully opend (file 5, through indirect file 6),
the subject must have appropriate access rights for directory 3, file 6, directories 1, 2, and
4, and finally file 5. We know how to interpret access rights for ordinary files (like 5)
and directories (like 1, 2, 3, and 4). How do we interpret the access rights on indirect file
6? We could ignore them completely and trust the other restrictions to create adequate
security. Or we might treat file 6 as an ordinary file. To open it for reading, we would
require Read privilege on both indirect file 6 and file 5 (as well as Execute privilege on
directories 1, 2, 3, and 4). To open file 6 for writing, we would require Write privilege
on both 6 and 5 (and Execute privilege on directories 1, 2, 3, and 4)

This latter approach becomes awkward if we allow indirect files to point to direc-
tories, in which case we want to treat the permissions on the indirect file as directory per-
missions. For example, to openf/e (file 5 through indirect file 7) for writing, we
would require Execute privilege on indirect file 7 and directories 1, 2, 3, and 4 and Write
privilege on file 5. Sometimes the privileges on indirect files are taken as ordinary-file
privileges, and sometimes they are taken as directory privileges. Perhaps it is simpler,
after all, to ignore them. BSD4.2 Unix takes this approach. It also understands the
ChangePrivileges call to apply not to the indirect file it is called on but rather to the file
that the indirect file refers to.

3 ACCESS METHODS

Processes read and write files. Specifying which part of the file is to be read or written
into depends on theaccess method for that file. The access method dictates bothwhich
location in the file andhow much data at that location are to be accessed. The access
method might be specified at the following times:

� When the operating system is designed. In this case, all files use the same access
method.

� When the file is created. In this case, every time the file is opened, the same access
method will be used.

� When the file is opened. Several processes can have the same file open and access
it differently.

Let us look at some of the more popular access methods.

3.1 Sequential access

Many applications require onlysequential access, in which the entire file is read or writ-
ten from the beginning to the end. Each operation implicitly advances a pointer that indi-
cates where the next operation should take place. We call this pointer theread/write
mark. Occasionally, separate read and write marks are kept for the same open file. (An

Access methods 205

early version of the Ada programming language separated these marks, but the current
design does not.) If several processes have the same file open for reading, each has its
own read mark; operations undertaken by one process do not affect the behavior of the
other one.

The read/write mark of an open file is therefore part of the context block of a pro-
cess and is not part of the file itself. Context blocks can be designed to contain an array
of open-file records. (The same array can be used for open-device descriptors.) Each
record contains information describing the file that is open, the intent of the process
(whether to read, write, and so on), the read/write mark, and information about where the
file is stored on the physical disk. The index of a particular open-file record is a con-
venient number to return to the process as the result of the Open service call. The pro-
cess can use this file number in its subsequent requests regarding the open file.

Sequential access might allow each operation to transfer an arbitrary number of
bytes, or there might be a fixed-size increment (a block) that must be transferred on each
operation. Fixed-size increments can be a characteristic of the installation, the file, or the
instance of the open file. If the increment is fixed, the read/write mark may be expressed
by the number of full increments from the start of the file.

3.2 Direct access

Some applications need to move the read/write mark to specific places without reading or
writing the intervening parts of the file. They might even want to move the read/write
mark backward in the file. For example, a program that traverses a large data tree stored
in a file might need to move to an arbitrary place in the file to find the next node of the
tree. We can use a Position service call for files just as we did in Chapter 5 for devices.

� Position(file number, where). This call tells the file manager to position the
read/write mark in the file represented bythe given filenumber. The‘‘where’’
parameter might be specified by its location from the start of the file, the end of the
file, or the current location of the read/write mark. The distance from that location
is given as a number of fixed-size increments (perhaps bytes).

3.3 Mapped access

The Tenex and Multics operating systems provide a novel form of file access called
mapped access. When a process opens a file, the entire file is mapped into the virtual
space of the process. Instead of returning a file number, the Open service call returns a
segment number. This number refers to a new segment that contains only the file. Simi-
larly, the Dynix operating system for the Sequent Balance computer allows files that have
already been opened to be mapped into virtual store.

206 File Structures Chapter 6

Instead of submitting subsequent requests to read or write, the process treats the
file as part of virtual store. To close the file, the process needs only to submit a
ReleaseSegment service call.

None of the file itself needs to be brought into main store at first. Instead, as the
process accesses the new segment, it will generate address-translation faults. The storage
manager will convert these faults into requests on the file manager to bring in more of the
file.

3.4 Structured files

Direct access requires the application program to compute where it wishes to seek in the
file. This computation may be based on data stored elsewhere in the file, or it may be
based on some secondary file that maintains indices into the main file. Database applica-
tions, which we will discuss shortly, often wish to seek to the part in the file that
corresponds to somerecord, as identified by the value of somekey field in the record.

For example, a file might contain data about all the students at a university. Each
student’s data could be stored in a single record, with fields for name, year in school,
grade-point average, mailing address, and a list of all the courses the student has taken.
An application program might wish to examine records only of second-year students. In
this case, the year-in-school field is a key to the file. Another application might wish to
examine records of students with straight A averages. Here, the running grade-point
average field is treated as a key.

A few operating systems allow the owner of a file to declare that the file should be
structured. Part of structuring a file is declaring what the records look like. In particu-
lar, the fields that will be used as keys must be described. Writing into the file is limited
to placing new records into the file and modifying or deleting old ones. Reading the file
requires specifying the keys and key values that the file manager should search for. Suc-
cessive read operations yield successive records that satisfy the current search pattern.
The records themselves might not have any particular order. OS/360 (and its descen-
dants) provides structured files of several kinds. One example is ISAM (Indexed
Sequential Access Method), which uses a two-level tree to access records indexed by a
single key. VMS provides a record-management tool thatincludes a language for
describing the structure of files and a set of routines that programs can use to access the
structured files.

3.5 Databases

A database is a collection of structured, interrelated data, usually managed by utility pro-
grams that perform queries and updates. These programs, which are called database
management systems, provide for complex searches that may involve a number of related
files. For example, finding the home phone number of all students who are majoring in
computer science and have a grade point averageof at least 3.5may requirereference to

Access methods 207

a student file, a majors file, and a grade file. The exact details depend on the way the
database is structured, which must, of course, be known to the database management sys-
tem.

Large-scale database management systems often find themselves in conflict with
the policies forced upon them by the underlying operating system. These conflicts
include physical disk allocation strategies, kernel caching (in particular, write-behind),
and main-store management.

4 FILE RECOVERY

Every user at some point accidentally deletes a file and thereby destroys many hours of
diligent labor. It does not do much good to consider that repeating the labor will be much
easier than doing it the first time and that the product will be better after this rework. The
operating system can help reconstruct the lost file if necessary measures have been taken.
Since recovering a lost file is a form of reliability, it is no surprise that all the techniques
that the operating system might use involve redundancy of some form or another.

4.1 Dumps

Almost all operating systems provide for a fairly large grain of redundancy: Every so
often, an archival copy (adump) of files is made on magnetic tape. The unfortunate user
who has lost a file to accidental deletion can recover it by finding the most recent version
that is stored on tape. Since storing all the files that exist might take many reels of tape, it
is not reasonable to make complete archives very often. However, infrequent archives
increase the chance that an archival copy of the deleted file, even if one exists, is far out
of date.

Instead, partial file dumps are commonly made every day. These tapes include
only files that have been modified since the last partial backup. The user who acciden-
tally deletes a file can recover at least yesterday’s version, which is often better than
nothing at all. If the file has not been modified for a few days, it can be found in a more
ancient partial dump. Partial dump tapes may be reused after a few weeks; if so much
time has elapsed since the file was last modified, it is likely to be on a full dump tape,
which is saved for a much longer time.

Instead of two classes of dump, one-day and total, we can devise a general scheme
that tries to minimize the number of tapes needed but maximize the chances that we have
saved the file somewhere. Let’s assume that we have eight tapes. To keep things simple,
we will pretend that a single tape is always long enough to hold all the files we dump
when we use that tape. (In reality, tapes 0 and 1 can be fairly short, but tapes 6 and 7 will
have to be quite long.) Number all the days that the operating system runs, starting with
day 1. On dayn , dump files on tapet , where 2t is the highest power of 2 that dividesn .
For example, on day 51, we use tape 0, but on day 52, we use tape 2. On day 64, we use

208 File Structures Chapter 6

tape 6. Whenever we use tapet , we dump all files that were modified since the last time
we used tapet or any tape with a higher number.

We use the lower-numbered tapes fairly frequently, so they don’t have to store
very many files. The higher-numbered tapes are used much more rarely, so they hold
many more files. Tape 7 is written only every 128 days. If we wish to archive files
longer than that, we just need to buy some more tapes.

This pattern of tape use is known as the ‘‘ruler function’’ because its graph looks
like the pattern of marks on a ruler. Figure 6.9 shows which tape we use each day by
drawing a vertical bar whose height tells the number of the tape to use. If a file is created
on dayc and deleted on dayd , a dump version will be saved substantially after dayd ,
and the length of time it is saved depends ond − c (as well as the exact values ofc and
d). For example, a file created on day 5 and deleted on day 8 has existed for 3 days.
During that time, it was saved on tapes 0 (day 5), 1 (day 6), and 0 (day 7). Tape 1 will
not be reused until day 10, so the file is saved 2 extra days. A 3-day file created on day 6
and deleted on day 9 has been saved on tape 3 (day 8), which will not be reused until day
24.

4.2 Backup files and versions

Most computer installations hire operators to dump tapes according to a fixed schedule;
these dumps form the last defense against lost information. There are other defenses that
are worth mentioning. First,backup files that duplicate working files are a standard
technique. If the user (or the user’s program) accidentally deletes a working file, its
backup can still be used. Some programs (particularly text editors) automatically save an
old version of the file they are working on under a name derived from the file’s name.
For example, if the editor is working on fileslide1.text, it might save the original
contents under the nameslide1.text.backup.

Backup files can be generalized to fileversions. Whenever a file is opened for
writing, a new version is created that is initialized to the data in the previous version of
the file. The new version is opened, and the old version is left alone. Modifications to
this version do not hurt the previous version. A wide spectrum of support is available for

Figure 6.9 The ruler function

File recovery 209

file versions on different operating systems.

� Manual: A user who is about to modify a file first copies it to a new name and
modifies the file under the new name.

� Special utility: Some programs, particularly the text editor, copy the file they are
about to modify to a new name and modify the new file.

� General utility: When requested, a general utility program copies the file to a new
name. A variant of this is a librarian program that allows files to be checked in and
out. Checking in a file creates a new version of the file. Some librarian programs
save space by storing only differences between successive versions. It is possible,
although perhaps time consuming, to recover any version.

� Automatic: When a process opens a file for writing, the storage manager opens a
fresh copy of that file. The version number is part of the file name. If it is not
mentioned when the file is opened, the most recent version is assumed. Tenex fol-
lows this policy. Exec-8 is similar, but only a limited number of version numbers
are available. Every time a new version is started, if the maximum number of ver-
sions are already stored for the file, the oldest one is overwritten. Files under VMS
can have up to about 32K versions, although the number can be restricted on a
directory or file basis.

All these mechanisms provide for deleting the most recent version (usually the default
deletion operation), a particular version, a set of versions, or the entire file.

4.3 Partial deletion

Another defense mechanism ispartial deletion of files. The DeleteFile service call
could mark the file as deleted without reclaiming its storage on the disk. If the user later
decides that the file should not have been deleted, an UndeleteFile service call could
change the mark and place the file back into full service. Partially deleted files might be
completely deleted by a PurgeFile service call. Alternatively, they could be purged when
the user’s session ends or when space is needed for other files. If the operating system
does not provide direct support for partially deleted files, the same effect can sometimes
be implemented by letting the ‘‘delete file’’ interactive command move the file to a direc-
tory reserved for partially deleted files.

One variant of the partial-deletion scheme is to structure files on the disk in such a
way that even though file deletion frees disk space, the file may still be reconstructed
until that space is used, although possibly by a time-consuming process. A ‘‘recover
file’’ program, which the user invokes in an emergency, tries to reconstruct the file if pos-
sible from the remnants that still reside on the disk. We will see how physical file struc-
tures can be chosen to meet this need.

At the other extreme, VMS allows the user to specify that all the disk blocks con-
taining a file be erased when it is destroyed, to prevent others from viewing sensitive
data.

210 File Structures Chapter 6

5 TRANSACTIONS

We have been concentrating on files that are used one at a time by one user at a time.
Both of these biases are inappropriate for databases, where single operations might
require access to several files, and different users may undertake simultaneous operations
that need to access the same file. To prevent chaos, we need to ensure that these
independent operations start with all files in a consistent state and leave them in a con-
sistent state.

The problem is similar to allocating sequentially reusable, non-preemptable
resources, discussed in Chapter 4. There are differences, however. We would like to
allow several processes to have the same file open for reading as long as none of the
processes modifies the file. File resources are sharable up to a point, unlike the ones we
saw in Chapter 4. In addition, we may need to refer to several files in order. If another
process changes some of the later files after we have read the first files, we might think
that the files are inconsistent.

We will use the termtransaction to refer to a set of related file accesses, possibly
to a number of files, that one process undertakes in order to perform its work. One pro-
cess may be involved in several independent transactions at one time, but this situation is
unusual. It is more common for a process to finish one transaction before starting the
next one. Our problem is to make sure that transactions do not interfere with each other.

5.1 Synchronization atomicity

Our first requirement is that transactions beserializable:

���

Serializability���

The effect of running a number of transactions concurrently
is the same as if they were run in some strict order

without concurrency.��
�
�
�
�
�

�
�
�
�
�
�

If there is no concurrency, there can beno interference between transactions. True seri-
alization would be too conservative (in the language introduced in Chapter 4). Luckily,
there are ways of enforcing serializability without requiring serialization. Another way
to describe our requirement is calledsynchronization atomicity:

Transactions 211

��

Synchronization atomicity��

Each transaction should appear to be atomic,
that is, indivisible, without interference from other

transactions that might be occurring at the same time.���
�
�
�
�
�

�
�
�
�
�
�

The simplest form of synchronization atomicity applies to transactions on only one file.
If processA is modifying a fileF in several places, but processB is readingF, we would
like B’s view of F either to omit any ofA’s modifications or to include them all. In most
operating systems, this result is achieved by preventingA andB from opening the file at
the same time. This policy enforces strict serialization on accesses to the same file.

Not all simultaneous file accesses lead to failures of synchronization atomicity.
There is no problem with any number of processes opening the file for reading. The
problem occurs only if one process wishes to write when some other process wants to
read or write. This set of constraints is commonly known as thereaders-writers prob-
lem. We will see this problem again in Chapter 7 when we discuss process synchroniza-
tion. The constraints of thereaders-writers problem areshown in the following table:

���
Read Write���

Read permissible Read/Write conflict
Write Read/Write conflict Write/Write conflict��
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Many operating systems prevent any process from opening a file that is already
open for writing (by any process). A file open for reading may not be opened for writing.
This policy prevents any of the conflictsof the readers-writersproblem. If the file
manager does not provide this service, it can be awkward or impossible to build it out of
other services that are provided.

In BSD4.2 Unix, file interlock is optional. Processes can open files requesting
either exclusive or shared access to the file. Shared access is intended for processes that
only want to read the file. Exclusive access is for those that want to modify the file.
While a file is open with exclusive access, no process is allowed to open it with shared or
exclusive access. While a file is open with shared access, no process is allowed to open it
with exclusive access. However, a process may violate the rules by opening the file
without specifying either shared or exclusive access. In VMS, individual records of
structured files may be locked separately.

A transaction may involve several files. Most operating systems do not provide
synchronization atomicity in such cases. However, we can provide this feature for data-
base utilities that need it. Instead of forcing the file manager to undertake this task, we
will speak of atransaction manager in the kernel that handles complex cases.

To provide synchronization atomicity in such cases, the transaction manager must
know when a transaction starts and when it finishes. Every open file may be associated
with some transaction. We could automatically start a transaction every time a user starts
a session and associate all file actions during that session with the same transaction.
However, this policy would lead to needlessly long transactions that would interfere with
other users. Instead, it is better to let a process open a transaction, much as it might open

212 File Structures Chapter 6

a file, and to specify the transaction each time it opens a file. Here are the service calls
involved:

� StartTransaction. This call tells the transaction manager that a transaction is
starting. The call returns a transaction number for the process to use.

� EndTransaction(transaction number). This call tells the transaction manager
that the transaction has finished. It is illegal to end a transaction for which some
files are still open.

� Open(file name, intent, transaction number). This call opens the given file and
returns a file number. The ‘‘intent’’ parameter indicates whether the file is to be
read, written, or appended. The special transaction number OneShot means that
the transaction involves only this one file. The special transaction number NoTran-
saction means that the process wishes to violate transaction rules for this file.

5.2 Failure atomicity

As we pointed out earlier, transactions are particularly useful for processes that deal with
databases. During the middle of a transaction, when some file modifications have been
made but others have not been made yet, the database is likely to be inconsistent. For
example, transferring funds from one bank account to another might require two separate
write accesses, one for each account. Synchronization atomicity ensures that no other
transaction will see the two accounts in an inconsistent state, with money deducted from
one but not yet added to the other or added to one without being deducted from the other.
However, a hardware or software failure between the two accesses might force the tran-
saction to terminate with the database in such an inconsistent state. Similarly, the tran-
saction manager may need to abort a transaction that enters a deadlock as it opens a file.
(We will see why later when we discuss implementing transactions.) At this time, the
database may be inconsistent.

Most database management systems require that such inconsistencies be prevented.
Failure atomicity is defined as follows:

��

Failure atomicity��

Each transaction is guaranteed either to complete
or to have no effect whatsoever.���

�
�
�
�

�
�
�
�
�

A failure in the middle of a transaction should either cause all modifications undertaken
by the transaction so far to be undone or should preserve the state of the files so that the
transaction will be completed once the failure has been repaired.

Most operating systems do not address either synchronization or failure atomicity
except to forbid simultaneous multiple accesses to the same file. (Unix does not even go
that far.) However, the increasing importance of database management systems is lead-
ing to more sophisticated transaction support within operating systems. Another aspect
of transactions,permanence, is a goal of most file managers: Once a transaction

Transactions 213

completes successfully, the results of its operations will never be lost.

6 PHYSICAL REPRESENTATION

There are many ways to organize files on disks. A few principles seem to be universal.

� Disk blocks have numbers, and complex structures can be placed on the disk by
having data in one block refer to another block by number.

� Each file is described by afile descriptor, which tells how the file is physically
arranged on the disk.

� Each physical disk is described by adisk descriptor, which tells how the disk is
arranged into areas and which parts are currently unused. The disk descriptor is
stored at a well known location on the disk.

� Information may be stored redundantly on the disk to allow programs to try to res-
tructure the disk if it gets confused. Confusion is the typical result of unscheduled
operating-system failures, because the structure may be undergoing modification at
the time of the failure. Even worse, the disk may be in the middle of writing a
block when failure occurs. Restructuring a garbaged disk is calledsalvaging.

� The basic unit of allocation is the single disk block, although entire tracks or
cylinders may be allocated at once to keep large regions in a file contiguous on the
disk. This attempt to keep files in local regions on the disk is calledclustering. It
is based on the Cache Principle, since it is faster to read or write on the disk at
cylinders close to the current position, and the most likely request to come after
one file request is another request on the same file. Clustering may also be
attempted to keep files that are in the same directory positioned close together on
the disk. Another form of clustering, calledskewing, spaces consecutive blocks of
a file a few sectors apart. As a result, a typical process reading the entire file will
find the next file block under the disk read/write head at the time it needs it. Some
disk controllers interleave sectors to place consecutively numbered ones some dis-
tance from each other on the same track. In this case, the file manager should most
likely not attempt skewing.

� Searching file structures and allocating free blocks would be too time consuming if
the information is stored only on thedisk. In accordancewith the Cache Principle,
some structure and allocation information is duplicated in main store. As is typi-
cally the case with caches, the cached (main-store) data and the actual (disk) data
will be out of step. Operating system failures (crashes) are therefore even more
serious than they seem because they may lose recent changes. To mitigate the
danger, all main-store caches are occasionally (perhaps every minute) archived to
the disk. Perhaps the worst time for a catastrophic failure is during archiving.

� The facilities provided by the file service determine the structures that must be
used. For example, direct access into arbitrary positions in a file requires different
structures from sequential access. Hierarchical directories and flat directories
require different structures. Different methods of access control also need dif-
ferent structures.

214 File Structures Chapter 6

6.1 Allocation

We will first examine the way that free space on the disk may be allocated. If we know
the size of the file and wish to maximize clustering, we may allocate entire tracks or
cylinders to the file. To make this allocation efficient,bit maps of free cylinders and
tracks may be kept for each disk. These maps are kept on the disk, but a copy is also
kept in a main-store cache.

A small example of cylinder and track bit maps is shown in Figure 6.10. Each
track is represented in both maps. The maps are arranged in the order of blocks on the
disk so that contiguous bits refer to contiguous tracks (that is, tracks on the same or adja-
cent cylinders). Figure 6.10 shades tracks that are in use. In this figure, there are eight
cylinders, numbered 0 to 7. (Typical disk packs have 200.) Each cylinder has four
tracks.

The following table governs which cylinders and tracks are marked in use.

Allocation state Cylinder bit Track bits���
Whole cylinder in use in use in use
Some tracks in use in use in use (where appropriate)
Completely free free in use�

�
�
�
�

Some file is using cylinder 4, so that cylinder is marked in use. All its tracks are marked
in use in the track map. Two tracks of cylinder 1 and one track of cylinder 5 are also in
use at the moment. For this reason the cylinder map shows these entire cylinders as in
use. Cylinders 0, 2, 3, 6, and 7 are completely free, as shown by the cylinder map. The
track map shows their tracks to be in use so that they are not allocated unless absolutely
necessary.

0 1 32 4 5 6 7

cylinder map

track map

Figure 6.10 Bit maps

Physical representation 215

When a file is to be created, if it is large enough to require at least one cylinder, it
may be given a number of entire cylinders from the free-cylinder bit map. We would use
cylinder 0 for a one-cylinder file. A two-cylinder file could fit either in cylinders 2 and 3
or in cylinders 6 and 7. Any larger file will have to be satisfied with non-contiguous
cylinders.

If a file requires less than a cylinder, we will measure its requirements in tracks. A
file that needs only one track can fit in cylinder 1, either track 1 or 3, or in cylinder 5,
track 3. A two-track file can be placed in cylinder 5, tracks 0 and 1. If there are not
enough contiguous tracks, cylinders may be converted to tracks. For a three-track file,
we can allocate cylinder 0 and mark it in use. We could then use its tracks 0, 1, and 2,
and leave 3 marked as available.

When a file is deleted and its space becomes available, the tracks it used are made
available in the track map. If all the tracks in a cylinder become free, that cylinder is
marked available in the cylinder map, and all the tracks are marked in use.

Allocating a file in a single contiguous region has several advantages. The direc-
tory entry (which must also be stored on the disk) needs to indicate only the starting point
and the length of the file. Direct access in the file is easy because the file manager can
compute the block number of any byte in the file. Clustering within files is perfect.

Unfortunately, this method produces substantial internal waste, because most files
need far less than a single track, and even large files are likely to waste about half of the
last track (or cylinder) allocated to them. Also, it depends on knowledge of the size of
the file before the allocation is made. In many situations the size can be estimated only
roughly. This deficiency leads to internal waste in some cases and inability to fit the file
in other cases. If the file doesn’t fit, it can be broken into individually contiguous pieces
calledextents. Within an extent, sequential and direct access are very fast, but the file
manager needs to record where each extent is. That information must be read before any
extent can be found, so access is slower than it would be with a single contiguous region.
OS/360 allocates contiguous regions in integral numbers of cylinders or tracks and allows
up to 15 extents.

External waste can also be a problem with contiguous allocation. When the disk
becomes relatively full, it may be impossible to create a new file because there are not
enough contiguous tracks, even though the total amount of free space is sufficient.
Shuffling the files is possible but usually requires that the entire disk be copied to a stag-
ing area (another disk or magnetic tape) and then copied back.

At the other extreme, a file manager can be designed to allocate all files by single
blocks. If a file needs many blocks, they may end up scattered across the disk; we will
see how this dispersion can be controlled. Free-storage allocation can again make use of
a bit map. The map would have a bit for each block on the disk instead of each track or
each cylinder. However, this bit map might be unacceptably large. A medium-large disk
has about 256M bytes. If each block contains 512 bytes, the disk has 512K blocks. The
bit map occupies 64K bytes. We could cache part of the bit map in main store and keep
the full map on the disk, where it would use 128 blocks.

One nice trick is to place parts of the map in the free blocks themselves. Instead of
allocating a fixed region of 128 blocks for the bit map, a single block is allocated. This
block does not hold a bit map but rather stores the numbers of up to 256 free blocks.
(We assume that a block number occupies two bytes.) Each of these free blocks may
store numbers of other free blocks. Thus free space is organized as a tree with a very
large fan-out. The exercises at the end of this chapter develop this idea further.

216 File Structures Chapter 6

6.2 File layout

Each file on the disk is associated with ancillary information stored in afile descriptor.
It might have the following structure:

1 type
2 FileDescriptorType =
3 record
4 Permissions : AccessRights; { may be organized in groups }
5 FileType : (Data, Directory, Indirect, Device)
6 Length : integer; { in bytes or words }
7 CreationTime : Date; { when first created }
8 ModificationTime : Date; { when last written }
9 AccessTime : Date; { when last opened }
10 ReferenceCount : integer; { number of aliases }
11 Layout : array of Extent; { tells which physical (disk)
12 blocks correspond to which virtual (data) blocks }
13 end;

The associated directory structure might look like this:
14 const
15 MaxFileNameSize = ... { whatever }
16 type
17 DirectoryEntry =
18 record
19 Name : array 1:MaxFileNameSize of char;
20 { For simplicity, we assume only one component }
21 Version : integer;
22 Descriptor : FileDescriptorIndex;
23 end;
24 Directory = array of DirectoryEntry;

The FileType field (line 5) is used to distinguish major categories of files. Directories are
used in a very different way from data files. Device files are usually not files at all but a
convenient way to unify transput with the file system. On some operating systems, such
as Exec-8 for the Univac 1100 computer, the Data type is further categorized as ‘‘source
program,’’ ‘‘object code,’’ or ‘‘load image.’’ One can imagine other categories as well,
such as ‘‘mail file’’ and ‘‘command file.’’ In those operating systems that do not use the
file descriptor to distinguish these different uses for data files, they can still be dis-
tinguished by the file name (using conventions we discussed earlier) or by the file con-
tents.

The Layout field (line 11) is used to find the physical block that holds any given
byte of the file. For the purpose of sequential access, each physical block can also con-
tain the block number of its successor. This extra information can reduce the number of
Seek operations needed to read an entire file sequentially. Of course, such redundant
information must be updated when the contents of the file change (for example, when
new data are written at the end). If this redundant information (which may be treated as a
hint) is wrong, the truth (that is, the correspondingabsolute) may be deduced from the
file descriptor. At the worst, a salvage operation may be able to reconstruct the file from
extra information stored in each data block identifying the file to which it belongs.

The declarations above are intended for file structures that allow aliases. Each
alias for the file has its own directory entry, and all those entries point to the same file

Physical representation 217

descriptor (line 22). This pointer is most likely in the form of an index into the file
descriptor array. If we forbid aliasing of files,we don’t need thereference count(line
10), and the directory entry for each file can include the file descriptor instead of pointing
to it. That is, line 22 would read as follows.
22 Descriptor : FileDescriptorType;

The referencecount (line 10) is maintained by the file manager so that it can
reclaim the file descriptor, along with the data blocks in the file, when the last alias for
the file is removed.

Multiple versions of a file require the Version field (line 21). Each version of a file
is listed separately in the directory with its own file descriptor or pointer to a file descrip-
tor. If two versions are almost identical, space can be saved on the disk by sharing some
file blocks. Whenever the file is opened for writing, a new version can be constructed
with a new directory entry.

Initially, the file descriptor for the new version is an exact copy of the one for the
previous version. Both the previous and the new version have the same Layout field (line
11), so they share disk blocks. Whenever a modification is made to a block in the new
version, the entire block is copied, and the descriptor of the new version is updated to
show the location of the new block. That is, blocks of the file are split into separate
copies only when necessary. Special care is needed to avoid splitting when unnecessary
and to postpone reclaiming a disk block until all the versions that use it have been
deleted. We saw a similarcopy on write strategy earlier when we were discussing seg-
mentation.

To save more disk space, a utility program can detect similarities by comparing
versions on a block-by-block basis and discarding redundant blocks as they are found.
This operation could be carried out whenever a version is closed. Since it is not critical,
it can be performedoffline, that is, whenever the opportunity arises, perhaps late at night.

Line 24 in the declarations above suggests that a directory is a linear array of direc-
tory entries. This array can be searched sequentially as long as the directory is not too
long. When a file is deleted, its slot in the array can be freed (for example, by putting a
special value in the Descriptor field, line 22) to be used by the next file that is created. If
directories are very long, as can happen with flat directories, a hashing or tree-based
technique may well be better for organizing the entries in the array.

To allow the disk to be salvaged, it is important that file descriptors be distinguish-
able from data blocks and from free blocks. A byte at the start of each block could be
reserved to indicate the nature of the block, but that would reduce the amount of space
available for data in each data block. That extra byte can get in the way if the disk driver
needs to read several blocks into an extended main-store buffer. Alternatively, a region
of the disk could be reserved for file descriptors. We could call this region thedescrip-
tor area.

To promote clustering, the entire disk can be subdivided into subdisks, each com-
posed of a number of consecutive cylinders. Each subdisk has its descriptor area. The
files described by those descriptors use data blocks preferably within the same region. A
separate free-block structure would be appropriate for each subdisk.

If we want file descriptors to be recognizable, it is wise to make them all the same
size no matter how large the file they represent. In that way the salvaging operation can
be sure of the location of all file descriptors. Some of the information we might store in
the file descriptor has a constant size: access rights (assuming that we divide the users
into a fixed number of well-defined groups), creation time, time of last backup, expiration

218 File Structures Chapter 6

date (for automatic deletion), number of aliases (for reclamation after deletion from a
directory), and file type. In contrast, pointers to the blocks that hold the file contents
might require any amount of space. For the following discussion, we will assume that
the file is constructed in extents, each of which comprises a number of contiguous blocks.
We need to store the length and starting block for each extent.

One organization is to place length and starting-block information for the first
extent in the file descriptor and to reserve space in each extent to describe the next one.
This linked organization is fine for sequential access but clumsy for direct access.

Alternatively, the file descriptor could contain information about every extent.
However, it would be wasteful to allocate enough overhead space in each file descriptor
for the largest possible file. Instead, a fixed number of pointers may be stored and an
indirect scheme used if the file is larger. Most files are very short. (A recent study at the
University of Wisconsin showed that about 42 percent of all files on a Unix installation
for a research community fit within one block, and 73 percent fit within five blocks. A
similar study at Los Alamos Scientific Laboratory showed that half the files were smaller
than 40K bytes, whereas many files reached 10M bytes or larger.) We might therefore
limit the storage in the file descriptor to describe ten extents, for example. If extents can
be arbitrary in size, we are able to represent very large files this way, but if extents are
typically one block long, we can deal only with relatively short files.

Figure 6.11 shows the format of such a file descriptor. The descriptor has room for
a ten-block file. The particular file it represents uses only three blocks. For simplicity,
the figure omits all the other information that might be stored in the descriptor.

If a file grows too large for the file descriptor, we could reorganize it, at some cost,
to collapse some of its extents. That is, we could try to find free space on the disk large
enough to hold two or more extents of the file. We would copy those extents into the free
space and modify the descriptor appropriately.

info
other

Figure 6.11 A three-block file

Physical representation 219

If extents are required to be the same length (for example, one block), restructuring
will not work. Instead, we could provideoverflow file descriptors that contain more
pointers. The file descriptor could use the first nine pointers for the file itself and, if
necessary, use the tenth pointer to point not to the next extent of the file but to the first
overflow descriptor. This overflow descriptor could be a full block. Assuming that we
need two 2-byte integers for each extent (one for the size, one for the pointer), we could
fit another 128 extents in each overflow descriptor. The last one could again be reserved
for overflow.

Figure 6.12 shows a descriptor for a file that requires 13 blocks. The overflow
descriptor as shown has slots for 56 extents. Only 4 are in use. The last slot, if needed,
would point to yet another overflow descriptor.

Figure 6.12 A 13-block file

220 File Structures Chapter 6

The structure just described works very well for sequential access, in which the
entire file is read from start to finish. When the file is opened, the file manager can read
the file descriptor into main store and use its information to direct the input of the first
nine extents. Then the manager can read the overflow file descriptor into main store and
continue the input. In fact, most very long files are read in exactly this fashion. They are
typically load images for large programs or data files created sequentially by one pro-
gram to be read sequentially by another.

However, long files used as databases are often accessed in non-sequential fashion.
As we saw, the Position service call might indicate the exact byte of the file that is to be
accessed next. If this call is used, our use of extents and overflow file descriptors has two
shortcomings.

� To find out which block holds any given byte in the file, we must first calculate
which extent holds that byte. This calculation requires repeated inspection of the
extent entries in the descriptor because each extent may have a different size.

� If many overflow descriptors are used, seeking a great distance in the file may
require many disk operations to read all the overflow file descriptors between the
current location and the desired location.

These problems can be addressed by a slight change in organization of the file descriptor.
First, we can demand that all extents have the same length. Next, we can organize the
file descriptor as a tree, not as a linked list. The tree has a depth determined by the size
of the file; the depth is indicated in one of the fixed locations in the file descriptor. A
depth-1 tree just uses the entries in the descriptor as direct pointers to extents. Figure
6.11 is a depth-1 tree. It has ten entries; therefore, depth-1 trees may use up to ten
extents.

A depth-2 tree treatseach entry in the descriptor as a pointer to an overflow
descriptor, which is full of direct pointers to extents. If overflow descriptors can hold
128 pointers, such files may use up to 1280 extents. A depth-3 tree treats those overflow
descriptors as indirect pointers yet again. Such files have 10× 128 × 128 = 163,840
extents.

Let’s assume that we have a depth-3 tree representing an enormous file and we
wish to find the block that has byte 1,000,000. Since there are 512 bytes in a block, we
want byte 64 of block 1953. (The first block is given the number 0.) Since each entry in
the file descriptor is the root of a subtree of blocks that includes 128× 128 = 16,384
blocks, the block we want is in the first subtree. We now read the overflow descriptor
pointed to by the first entry in the file descriptor. Since each of its 128 entries governs
128 blocks, we want the 33rd block in the 16th entry. We read the overflow block
pointed to by the 16th entry. Its 33d block is the one we want. We have accessed a par-
ticular byte with four disk accesses. Some of these accesses may have been avoided by
cache hits because the disk driver caches recently used disk blocks in main store.

Our new organization does have its costs. If we do not know how long a file will
be when it is created, we will have to assume it needs only a one-level tree. When it out-
grows those limits, the organization must be changed, rearranging entries (although not
recopying any data blocks). One way to avoidthis rearrangement is tolet the first seven
entries always be direct pointers. The eighth could head a two-level tree, the ninth a
three-level tree, and the tenth a four-level tree. This scheme is pictured in Figure 6.13,
which only begins to suggest how huge the file can grow.

Physical representation 221

Figure 6.13 A huge file

6.3 Disk layout

The disk is divided into different regions that serve different purposes. As we have men-
tioned, subdisks can be built to promote clustering. Subdisks also allow administrators to
segregate files pertaining to different projects and to limit the amount of disk space each
project uses. File descriptors occupy fixed locations on each subdisk. The root of a mul-
tilevel directory structure should be easy to find. One easy way to do that is to let the first
descriptor in file descriptor space represent the root directory. In a flat or two-level struc-
ture, the main directory must be similarly easy to find.

When the operating system is started, it must be able to tell the structure of the disk
by examining the disk itself. Adisk descriptor could be stored at a fixed location (for
example, block 0) that indicates how many subdisks there are and how many blocks of
file descriptor are stored on each subdisk. It would also include the bit map of free
tracks, free cylinders, or free blocks. As we have seen, free blocks might be arranged in
a linked list or a tree; pointers to this structure belong in the disk descriptor. The disk
descriptor might be stored in several places on the disk, because if the disk develops a
flaw, some blocks may become unreadable. It is a disaster if the only copy of the disk
descriptor becomes unreadable.

When a disk is formatted, bad sectors are detected by the disk controller and may
be sequestered so that they are no longer addressible. Occasionally, sectors become bad
after formatting. These sectors may be placed in a ‘‘bad-sector file,’’ which is otherwise
never accessed and is not placed in any directory. In this way, bad sectors are placed out
of harm’s way. Fancy archiving programs that read sectors directly from the disk
without going through directories must be aware of the bad-sector file to avoid reading it.

222 File Structures Chapter 6

6.4 Multiple disks

Even personal computers often have several disks. Each disk can have its own indepen-
dent set of files, in which case the absolute file name can include a disk specification. For
example, in MS-DOS an absolute file name starts with the name of the disk. For exam-
ple, one could name a fileA:patish.mod to indicate that it is on disk A. If the
current working directory isA:, then there is no need to use the absolute name.

On large installations, where there may be many disks, it is an inconvenience to
remember where each file resides. Instead, all the disks can be treated as a single set of
files. For concreteness, we will assume that a hierarchical file structure is in use. We can
imagine various ways to distribute the hierarchy across disks. These methods range from
very fine grain to very course.

The finest grain method allows individual files to cross disk boundaries. Each
pointer to a data block includes both the disk identifier and the block number. The list of
free blocks also spans disks. This idea is depicted in Figure 6.14. This method has
decided advantages: Mammoth files such as file 3 can be stored, even though no one disk
can hold them, and sequential access can be extremely fast, since seeks on some disks
can overlap transfers on others. However, all pointers to disk blocks are longer, and a
single failed disk can make almost all files unreadable. Furthermore, disks such as
floppies cannot be dismounted, since they no longer hold an independent set of files. If
we were to remove disk C, not only would file 1 disappear, but also part of file 3.

At the other extreme, we can require that each disk be a self-contained subtree of
the file hierarchy. Such course-grain division is used by Unix. It is shown in Figure
6.15. Each of the three disks shown has its own directory structure. When the operating
system is first started, only one disk, let’s say disk A, is used. Only files 1 (the root direc-
tory), 2, 3, and 4 can be accessed. However, the other disks can bemounted into the
hierarchy by means of a service call:

� Mount(device,file name). This call updates the mount table in the file manager.
Each entry in the table gives the device number (such as disk B) and the index of

file 3

file 1

file 2

disk Cdisk Bdisk A

Figure 6.14 Files crossing disk boundaries

Physical representation 223

121110

9

876

5

432

1

disk Cdisk Bdisk A

Figure 6.15 Subdirectories crossing disk boundaries

the file descriptor associated with the given file name (for example, file descriptor
2). Every access to a file descriptor is first checked against the table; if the file
descriptor is listed there, the file descriptor for the root of the mounted device is
used instead. As a result, the contents of the file mentioned in the Mount call are
no longer accessible.

For example, if a process mounts disk B onto file 2 and then mounts disk C onto file 8,
the virtual file structure looks like Figure 6.16. File 2 has been replaced by file 5, which
is a directory leading to other files. The old contents of file 2 are hidden. Mounting disks
is usually performed by a startup process during initialization. However, disks can be
mounted later; this facility is especially useful for dismountable units like floppies.
Before a dismountable disk is physically removed, the file manager must be informed by

8 (9)

2 (5)

1

3 4

6 7

10 11 12

Figure 6.16 Result of mounting disks

224 File Structures Chapter 6

a dismount service call.

� Dismount(device). This call writes any remaining write-behind blocks to the dev-
ice and removes the appropriate entry from the mount table. The contents of the
file mentioned in the Mount call are again available.

Mounting disks introduces novel security problems. Until a disk is mounted, it is
just a device, which in Unix can be accessed as a single device file. While it is in that
state, anyone who can access that special file can modify its data, introducing new access
rights and changing ownerships of the files it contains. In Unix, the problem is particu-
larly severe because a malicious user can set the rights on a load image for the command
interpreter so that it is owned by the ‘‘superuser,’’ an extremely privileged subject. It is
also possible to set the permissions on that file so that when it runs, it acquires the rights
of its owner. Then the user can mount the disk, execute that command interpreter, and be
as powerful as the superuser. For this reason, Unix usually allows only the superuser to
call Mount or modify unmounted disks.

6.5 Multiple machines

If several machines are connected by a network, files can often be accessed across
machines. A network-wide file name includes its machine name. For example, in DEC-
net, a file /a/b on machine George would be namedGeorge::/a/b. When a pro-
cess accesses a file with a remote name, messages must be sent to a server on the remote
machine to open the file there and to access it on behalf of the local process. Discovering
that a file name is remote and negotiating with the remote machine can be one of the
functions of the file manager (as in VMS), or it could reside outside the kernel in library
routines linked into programs that wish such access.

Just as mounting disks is an elegant way to simplify organizing files on several
disks, remote mounting simplifies organizing files on several machines. One good
example is the Network File Server (NFS), developed by Sun Microsystems for Unix.
Instead of a local device, the Mount service call can specify a remote directory, that is, a
directory in some cooperating machine’s file space. Of course, the remote machine has
the option of refusing to service such a request, and this decision can be based on the par-
ticular directory that is being mounted and the identity of the requesting machine. Once
a remote directory has been mounted, users of the local machine see a virtual file hierar-
chy that includes all the files in that remote directory. Whenever the local file manager
needs a block from a remote machine, it sends a request across a communication line to
the remote machine.

Figure 6.17 shows a typical arrangement of files across three cooperating
machines. Each machine has a disk that is used for the initial file system (here, disks A,
C, and E). These disks have very similar or even identical files. Each machine also has a
larger disk that holds files unique to that machine (disks B, D, F). Each machine mounts
disk B onto file 2, disk D onto file 3, and disk F onto file 4. The result is that everyone on
these three machines sees an identical extended file hierarchy. In fact, if accounts are the
same on all three machines, users can log onto any machine that happens to be most

Physical representation 225

disk A disk B

1

2 3 4

5

6 7 8

1

2 3 4

432

1

disk C disk D

disk E disk F

9

10 11 12

13

14 15 16

1

6 7 8 10 11 12 14 15 16

2 (5) 3 (9) 4 (13)

machine 1

machine 2

machine 3

Figure 6.17 Network File System with three machines

convenient. Of course, the installation managers can decide to mount disks in a much
less symmetric fashion.

Mounting disks remotely exacerbates the security problem that we touched on ear-
lier. NFS defines the access rights of a subject making a remote access to be identical to
the rights for local access. That is, a single subject can own files on various machines,
and those files may be accessed as if they were local. Therefore, even if accounts are not
identical on all machines, user identifiers must be unique across machines. It would be
disastrous for two individuals, having accounts on machine 1 and machine 2 respectively,
to have the same user identifier: They would each have rights over the other’s files. Any-
one who has superuser privilege on one machine automatically has it on all machines.
For this reason, NFS makes an exception to its rule and treats the superuser as an ordi-
nary subject with respect to remote files.

226 File Structures Chapter 6

6.6 Implementing transactions

Implementing synchronization and failure atomicity is not easy. We will not give a very
detailed explanation here but will present some of the fundamental mechanisms that are
used. To implement syncrhonization atomicity, the transaction manager may place a
shared-access lock on filesas they are opened for reading and an exclusive-access lock
on files as they are opened for writing. (Instead of locking files, we can lock disks, direc-
tories, file records, or file bytes.) If the new lock conflicts with an existing lock held by
some other transaction, the transaction manager blocks the transaction that needs the new
lock. These locks may be stored in the file descriptor by recording the transaction
identifiers of the holders of the lock. Thetwo-phase locking policy requires that all
locks created by a transaction be maintained until the transaction is finished opening and
closing files. (During phase one, locks are acquired; during phase two, they are
released.) This policy assures synchronization atomicity. However, the fact that Open
can block leads to a possibility of deadlock, so the transaction manager must be willing to
abort a transaction.

To implement failure atomicity, every time a change is made to a file, the state of
the file before the transaction started may be saved. There are various ways to save the
previous state. One is to start a new file version every time a change is made; the version
is based on the time when the transaction started. If the transaction aborts, the previous
version can be used. Alternatively, all changes can be recorded in alog that includes the
old state of the file before the change.

A third alternative is to store all changes on fresh disk blocks. Those disk blocks
are linked into the file descriptor only when the transaction is ready to complete. The list
of operations needed to modify file descriptors is called anintentions list. Once the tran-
saction is ready to complete, the intentions list is written. The transaction is then marked
as committed. After this point, no failure will prevent completion of the transaction.
The intentions are then performed. If the operating system should crash, it will redo the
intentions when it starts up again. The intentions must be posed in such a way that doing
the same one many times has the same effect as doing it once.

Correct implementation of transactions is complicated by the possibility that the
disk might fail. One way to make the disk more reliable is to buildstable storage, which
contains readable data even if the disk should fail in the middle of a write operation.
Stable storage can be implemented by using two disk blocks. Writing to stable storage
involves writing the same information to both blocks. Reading may use either one. If the
disk fails during a write operation, only one of those blocks can be injured; the other one
holds either the original data or the properly modified data. If the failure happens
between the two writes, the one written first is believed. Stable storage can be used for
any sensitive information. It is usually too costly to use for entire files, but it might be
used for directory structures, logs, and intentions lists.

If a transaction modifies files on several disks, there is a danger that some disks
will commit, but others will fail at the last minute and therefore maintain the old versions.
The resulting chaos violates failure atomicity. To prevent this calamity, thetwo-phase
commit (not to be confused with two-phase locking) policy first writes the intentions lists
on all the disks (phase one), commits the transaction, and then starts performing the
intentions (phase two). A disk failure during phase one aborts the entire transaction. A
failure during phase two causes no harm; the intentions will be performed later when the

Physical representation 227

disk is restored, since they are in stable storage.

7 PERSPECTIVE

The file manager must provide an acceptable level of service for a wide range of applica-
tions. Some file managers accomplish this goal by providing a very simple but efficient
service and expect that complex applications can build on it. For example, one can make
a case for the idea that a flat file space of sequential, direct-access files with minimal
access restrictions is acceptable for many applications and is an adequate base for exten-
sion to other applications.

Other file managers accomplish the goal by providing many kinds of service. For
example, a process might have a choice of half a dozen file types and allocation strategies
at the time it creates a file. The file manager supports all these options as efficiently as it
can. Such a file manager might actually implement a simple base structure and build
alternative structures on top of that base.

Database management systems are the most difficult to serve well. They structure
data and access it in regular ways, but few file managers are equipped to take advantage
of those regularities. For example, we examined storing huge files in depth-3 trees and
were pleased that a direct access required no more than four disk accesses. However, if
the huge file is storing a database, the database is likely to contain internal pointers.
These pointers might be expressed in terms of bytes from the start of the file. Following
such a pointer requires about four read operations. If the pointers were expressed in phy-
sical block number, each would need only one read operation. The structure used by the
file manager effectively decreases efficiency by a factor of 4. For this reason, database
programs like to avoid the file abstraction and prefer to deal directly with physical
addresses.

The internal structure of the file manager can be built in the following layers.

� File layer: This module creates a data structure for each open file. The data struc-
ture includes the file descriptor and the read/write mark. Procedures in this module
open and close files on behalf of processes that submit the Open and Close service
calls. The directory in which a file resides must be opened for a short time in order
to find out where the file descriptor is. If the file is named by a path, each directory
in the path must be opened for a short time.

� Byte layer: This module provides procedures for reading or writing any number of
bytes from or to any open file. These procedures consult the open-file structure to
determine which disk block is involved in each transput. They also modify the
read/write mark. These procedures are called by the Read, Write, and Position ser-
vice calls. They are also called by procedures in the file layer that need to read
directories.

� Block layer: This module provides procedures to read and write entire blocks. A
cache of recently used blocks may be maintained so that successive operations to
the same block do not require disk actions. This layer is the upper layer of the disk
driver.

228 File Structures Chapter 6

Each layer smooths out chunkiness created by the lower levels and produces new struc-
tures, as suggested by the Beautification Principle. In the case of files, we can start with
the atomic level, where the disk surface is composed of discrete components (iron atoms,
for example). At the aggregate level, these discontinuities are evened out, and we con-
sider each disk surface to be essentially uniform and continuous. The disk controller
introduces structures by collecting together several platters and subdividing each into
tracks, sectors, and bytes. The block layer flattens this hierarchy, leaving only an array
of disk blocks, each composed of a fixed number of bytes. The byte layer hides disk
blocks and the file-descriptor structures in order to introduce byte streams. The file layer
organizes these streams of bytes into chunks called files. Finally, directories convert a
linear array of files (indexed by their descriptor numbers) into a tree structure.

We can demonstrate these layers of the file manager by tracing their actions when
a process executes the following program:

1 procedure Example;
2 var
3 MyFile : FileNumber;
4 begin
5 MyFile := Open("/a/b",ToWrite);
6 Position(MyFile,700); −− skip the first part of the file
7 Write(MyFile,"testing",7); −− seven characters
8 Close(MyFile);
9 end Example;

(1) The Open call (line 5) causes a context switch to the kernel, which calls the file
layer of the file manager to open this file.

(2) The file layer needs to open/ (the root directory) to find file/a, which is itself
a directory. This action involves asking the block layer to bring in the file
descriptor for /. By convention, we use descriptor 0 for this file. The file layer
can calculate which disk block contains descriptor 0 by referring to the disk
descriptor, which should be kept in main store at all times. Let us pretend that
disk block 10 is needed.

(3) The block layer checks the cache of file blocks to see if block 10 is currently in
main store. If so, this layer returns immediately, passing back a pointer to where
in main store it has cached block 10. In our situation, a cache hit is very likely,
because block 10 is used extremely frequently. If there is a cache miss, the block
layer selects some cache entry to be overwritten (based, for example, on an LRU
strategy). If the entry it has chosen is dirty, it must first write out that entry.
While the necessary transput is in progress, the block layer places the current
process on a device-wait list and queues the appropriate read (and write) request
to the lower part of the disk driver. Other processes are allowed to run until the
lower part of the disk driver has finished writing, if necessary, and then reading
in block 10. Then the calling process, still executing in privileged state inside the
block layer, returns to the file layer. It passes back a pointer to the main store
where block 10 has been read into the cache. We will ignore how the block layer
performs its job from now on.

(4) The file layer reads the descriptor for/ from block 10. It determines that the
caller has the necessary access privileges by checking the Permissions field of the
descriptor. From here on, we will ignore all privilege checks. The file layer now
creates a temporary open-file descriptor for/. Here is a possible format for an
open-file descriptor.

Perspective 229

10 type
11 OpenFileDescriptor =
12 record
13 Descriptor : ˆFileDescriptor; { points into disk-block cache }
14 Mark : integer; { the next byte to be read or written }
15 Mode : (ToRead, ToWrite, ToReadWrite);
16 end
17 end;

In our case, Descriptor (line 13) points into the disk-block cache where the file
descriptor has been read, Mark (line 14) starts at 0, and Mode (line 15) is set
ToRead.

Let us assume that a file entry in a directory is always 20 bytes long.
The file layer now calls the byte layer to read the first 20 bytes from/ and store
them in a 20-byte data structure (let us call it an entry descriptor) allocated for
this purpose:

18 type
19 EntryDescriptor =
20 record
21 Name : array [0..15] of char;
22 FileDescriptorNumber : integer; { 4 bytes }
23 end;

(5) The byte layer, referring to the open-file descriptor for/, asks the block layer to
fetch the first block (say 512 bytes) of/. It then copies the first 20 bytes to the
entry descriptor, updates the file’s read mark, and returns to the file layer. If it
had been asked for bytes that span several blocks, it would have asked the block
layer for each required block in turn and copied the relevant information. If the
file is large enough so the file descriptor (line 13) is insufficient to point to all the
blocks, the byte layer can ask the block layer to read in overflow file descriptors.
We will ignore how the byte layer works from now on.

(6) Upon reading the entry descriptor, the file layer may discover that it does not
describe /a but rather some other file, such as% or ˆ . In that case, the file
layer repeatedly asks the byte layer for another 20 bytes from/ until it finds an
entry describing/a. If it fails, the Open call was invalid, and an error return is
taken to the process.

(7) Having found a directory entry for/a, the file layer releases the temporary
open-file descriptor for/ and opens a new one for/a in a similar fashion.

(8) The file layer follows a similar course until it has created an open-file descriptor
for /a/b, set to allow writing (line 15). The write mark (line 14) is initialized
to 0. All temporary open-file descriptors are released by now. The index of this
open-file descriptor is passed back to the calling process to use as a file number.

(9) The process next submits a Position service call (line 6). The kernel forwards
this call to the byte layer, which advances the write mark (line 14) to position
700.

(10) The process submits a Write service call (line 7). The byte layer asks the block
layer to read in the second block of file/a/b, since the write mark (line 14)
indicates that this is the appropriate block. This block now appears in the cache
of file blocks. The byte layer then copies 7 characters from the virtual space of
the calling process into the cache copy and marks the copy as ‘‘dirty.’’ This
block will eventually be cleaned by being copied back to the disk.

230 File Structures Chapter 6

(11) The process submits a Close service call (line 8). The file layer releases the
open-file descriptor for the file.

We have ignored a few details here, such as how we ensure that the block layer does not
discard one of its cached blocks while it is still in use by a higher layer, how room is
made for overflow file descriptors when the byte layer needs to bring them in, what hap-
pens if the file was only 400 bytes long at the outset, and what is different if the file is not
stored on disk at all, but on a magnetic tape.

8 FURTHER READING

General discussions of file systems may be found in most of the textbooks cited at the
end of Chapter 1. Individual file systems are discussed in a number of articles. The CAP
filing system (Needham and Birrell, 1977) is designed for the Cambridge CAP computer
(Needham and Walker, 1977), whose architecture supports capabilities directly. The
Intel 432 computer also supports capabilities directly; its operating system, iMAX-432,
takes advantage of that feature in its file structures (Pollacket al., 1981). In the Demos
file system for the Cray-1 computer, the file manager is a process instead of a module in
the kernel (Powell, 1977). Pilot, an operating system for a personal computer (Redellet
al., 1980), has a flat directory structure, allows physical disks to be added and removed,
provides mapped file access, and uses a label for each block that describes its use to pro-
mote salvaging.

File servers are machines dedicated to providing a file system for a collection of
autonomous computers. Some file servers that have been described in the literature are
WFS (Swinehartet al., 1979), Felix (Fridrich and Older, 1981), the Xerox distributed file
system (Mitchell and Dion, 1982), and the Cambridge file server (Birrell and Needham,
1980).

Several studies of file sizes have been reported, including one for the Los Alamos
Scientific Laboratory (Powell, 1977) and for a Tops-10 installation in an academic
environment (Satyanarayanan, 1981).

Database management is a large subject with close ties to the subject of operating
systems. The special operating-system requirements of database management are dis-
cussed by Gray (1979) and Stonebraker (1981). Bernstein (1981) discusses a great
number of implementations of transactions for databases.

We have shown only one way to organize the levels of a file manager. Other ways
are given by Calingaert (1982), Shaw (1974), and Peterson and Silberschatz (1985).

9 EXERCISES

Exercises 231

1. Implement a file system by using a normal file of length 10K bytes as a virtual
disk. Your program should be built in several layers:

� Directory control: creates and deletes files and directories
� File transput: opens, closes, reads, writes, positions, and searches directories
� Buffered transput: Caches recently-used blocks
� Basic transput: Reads and writes one block.

For simplicity, you can make these assumptions: (a) There is only one user. (b) There
are no aliases, either direct or indirect. (c) There is no file protection. (d) Time stamps
are not needed in the file descriptor. (e) A file only has one version. To make the prob-
lem interesting, do implement hierarchical directories and direct access.

2. John makes a file calledJFile. Deborah makes an alias forJFile, called
DFile. John deletesJFile. Then John creates a new file, also calledJFile. How
many different files are there at the end of this scenario? Would the answer be different
if Deborah had made an indirect file calledDFile that pointed toJFile?

3. Distinguish between analias and anindirect file.

4. Does it make sense to make an indirect file that points to a non-existent file?

5. What is the difference between alocal file name and arelative file name?

6. Give fivedifferent full path names for theslide1.text file in the example in
the text. There are no aliases in the example. (Hint: Use % and ˆ.)

7. Assume that we allow introducing aliased names for directories. What problems
can occur?

8. The text mentions default permissions for files and suggests both a ‘‘positive’’
default (permissions that all files automatically receive) and a ‘‘negative’’ default (per-
missions that all files automatically do not receive). Compare how well these two
methods work for building executable files.

9. Give one good reason to prevent file owners from automatically having the
SetOwner privilege over their files.

10. Suggest a reason why someone might want to build a directory over which others
have Execute but not Read privilege.

11. We treat a relative file name in an indirect file as relative to the directory in which
the indirect file resides. What would be wrong with treating it as relative to the working
directory instead?

12. What does it mean to delete a directory that still has files in it?

13. What does it mean to delete a directory that is the working directory for some pro-
cess?

14. Show a simple way to build a cycle of indirect files.

15. Why do indirect files have a problem of cycles but aliases do not? (Assume that
both indirect files and aliases apply only to ordinary files, not to directories.)

232 File Structures Chapter 6

16. If we use the ruler-function method of saving files, what is the average length of
time a file is saved after it is deleted?

17. What criteria are important in evaluating a file-dump schedule?

18. Assume that we use the ruler-function method of saving files. A file is created on
dayc and deleted on dayd . It is now dayn . Give a formula or algorithm for finding the
tape that holds the most recent copy of this file.

19. In most versions of Unix, the file manager does not try to prevent simultaneous
access to a shared file. Show how co-operating programs could still avoid simultaneous
access. (Hint: Use an auxiliary empty file.) What happens if a process terminates unex-
pectedly?

20. The text suggests that free blocks may be arranged as a tree with a large fan-out.
What advantage does this structure have over arranging free space as a singly linked list,
which is a tree with a very small fan-out?

21. Why should we use cylinder and track maps for allocation of files whose length we
know beforehand? Wouldn’t a linked list or a tree of free blocks be better?

22. When a tree of free blocks is used, each time a free block becomes allocated, its
contents must be saved, or else pointers to other free blocks are lost. The amount of
saved information can grow very large. Suggest a structure intermediate between a large
fan-out tree and a linked list that makes this problem disappear.

23. Should overflow file descriptors be placed in a well-known region of the disk for
the scavenger to find?

24. Assume that I have a file that has 50 million bytes. How many 512-byte blocks
does it take to store the data? How many blocks of file descriptor or overflow file
descriptor are needed, under the following three assumptions?
(a) We use a linear chain of overflow descriptors.
(b) We use a tree of overflow descriptors of the appropriate depth.
(c) We have seven direct pointers, one indirect pointer, one doubly indirect pointer, and
one triply indirect pointer in the file descriptor.

25. You are designing disk structures for files with versions. Two versions are identi-
cal except that the later version has an extra byte near the beginning. What structure is
appropriate if you want to share blocks between these two versions? Comment on
whether you think this structure is worth the effort.

26. Proper treatment of locks can be summed up as follows: Each file must be locked
before it is accessed, and it should not be unlocked until the transaction has finished all
accesses to that file. Why is the second clause important? Isn’t it enough to make sure
the file is lockedduring each access?

27. Why is copy on write especially appropriate for implementing file versions when
the file manager supports mapped access?

28. If we implement copy on write, what extra data must be stored in the file descrip-
tors and data blocks of files in order to avoid unnecessary splitting and to postpone
reclaiming a disk block until all the versions that use it have been deleted?

Exercises 233

chapter 7

THE USER INTERFACE

We have seen how operating systems satisfy the Resource and Beautification Principles
and thereby provide resources and services toprocesses. We will now change our per-
spective to see how the operating system satisfies these principles to provide resources
and services tousers. In particular, we will look at how a user can specify what pro-
grams to run and how they should be treated. We will also mention a number of pro-
grams that are packaged with most operating systems to provide an environment in which
users can get their work done.

It is not easy to draw a line separating the operating system from extraneous pro-
grams that happen to be running under that operating system. One attitude we could take
is that the operating system includes only those functions that can be accessed through
service calls or through interrupts. Figure 3.23 places these functions in the kernel. Most
of this chapter is irrelevant to operating systems defined in this narrow way. The attitude
at the other extreme is that the operating system includes every program running on the
computer. In that case, a full discussion of operating systems must describe all the algo-
rithms that might be programmed; that would certainly encompass all of computer sci-
ence.

We will take an intermediate stance. The term ‘‘operating system’’ will include all
the standard programs that are included in any distribution of the software. We can dis-
tinguish kernel software, which requires hardware privileges to perform its functions;
essential utilities, which may not require privilege but which every user needs and which
determine the user’s view of the operating system; andoptional utilities, which are use-
ful programs that users may wish to use on occasion.

Different operating systems make these distinctions in different ways. For some,
like Multics, kernel software is itself divided into layers. Command interpretation (dis-
cussed in this chapter), an essential utility on some operating systems, is an optional util-
ity under Unix. The file manager (discussed at great length in Chapter 6) can be con-
sidered either as part of the kernel or as an essential utility.

This chapter deals primarily with functions provided by the operating system either
as essential or as optional utilities. Essential utilities shape the user’s view of the

234

operating system because they dictate how the user can interact with the computer.
Optional utilities also loom large in the user’s view, not because they are forced on the
user but because the functions they provide are often not duplicated by alternative pro-
grams, so anyone who wants to use the operating system must learn the interface to many
optional utilities as well.

1 THE COMMAND INTERPRETER

A command language lets the user tell the operating system what to do. It is built of a
number ofcommands. The language can be interpreted by a utility process that converts
commands into appropriate service calls. Instead of a utility process, a module in the
kernel may interpret the commands and directly call routines to accomplish whatever the
user requests. Whichever way command languages are interpreted, we will call the
software that interprets commands thecommand interpreter. Operating systems may
use other names for the command interpreter, such as ‘‘monitor’’ and ‘‘shell.’’

User requests to the operating system usually have two components: what pro-
grams to invoke and what their environment should be. Aprogram is a set of instruc-
tions packaged in such a way that a process can be started to run them. Programs, as we
have seen, are often stored in files as load images. They become processes when they are
invoked either directly through service calls or indirectly by commands. Many invoca-
tions of a single program may exist at the same time, each in a different process. Heavily
used optional utilities such as the text editor, text formatter, and compilers often have
several invocations simultaneously active.

The environment of a process is what distinguishes it from other invocations of
the same program. The environment includes where input data will come from (which
file or which device), where output data are to be placed, and parameters that give extra
information to programs and enable optional features.

For example, assume that the user wants to compile a Pascal program. The com-
mand or set of commands might specify the following:

� Which compiler to use
� Where the Pascal source program is stored
� Where to store the resulting load image
� Whether or not to run the resulting program
� Whether to generate a listing
� Whether to issue warnings for non-standard usages.

Only the first of these specifications describes the program to be run. The others all
describe the environment for the program.

Whether the operating system is used in a batch mode or an interactive mode, com-
mands specify exactly what the user wishes. The advantage of the interactive mode is
that mistakes are easy to repair immediately. For example, a malformed command pro-
duces an error message in either mode, but in interactive mode the next command usually
has not yet been entered, so a revised version of the previous command can be entered

The command interpreter 235

instead. In a batch mode, each command assumes that all the earlier ones were executed
correctly; error contingencies must be explicitly expected and dealt with as part of the
commands themselves.

Since there is such a similarity between the requirements of batch and interactive
use, a number of interactive command interpreters have been developed by modifying
earlier batch command interpreters. A tendency in the other direction has also occurred:
Interactive command interpreters often have a batch component, which allows users to
submit work now that is to be executed later or allows a number of related commands to
be packaged together to be interpreted as one larger command. We will describe these
command scripts later.

1.1 Invoking programs and establishing environments

The easiest way to specify a program is to name the file that contains its load image.
Since it may be awkward to state the full file name, conventions may be used to make
standard programs easier to invoke. For example, one or more default directories may be
established for commonly used programs. The local name of a file in these directories
suffices to invoke it. If more than one default directory exists, they are searched in some
order. For example, each user may have a personal program directory. That one might
be searched before the directory that includes optional utilities, which may in turn be
searched before the directory containing software built by the local community. If a
name is found in one of these directories, but for some reason the program cannot be run
(the user does not have the necessary access rights, for example), either the next direc-
tory could be searched or the request could fail.

The environment can be established in a global or a local fashion. A global
environment setting persists until it is changed; a local setting applies only to a single
process. As an example of a global setting, we might establish that whenever a program
opens a fileinput, the actual file should befirstrun.data. We may have several
processes that are all to use the same data, so setting this global association allows each
of these programs to run in the desired environment. Another global environment setting
might dictate that all files created by processes are to have an initial disk allocation of
three tracks, with an additional extent of one track whenever the allocation overflows.
As another example, we may wish to limit all processes to use less than 15 seconds.

Global environment settings are typically made through commands that have a
declarative character. A reasonable syntax would start each with the keywordset.
The examples shown above mighthave this sortof appearance:

set association input firstrun.data
set disk allocation 3 1 { three tracks for initial extent, 1 for others }

set cpulimit 15

Associated with eachset command might be ashow command that asks the com-
mand interpreter to display the current setting of the environment.

If the command interpreter is a utility process, it might translate these declarations
into service calls that modify the information in its context block. When it then asks the
kernel to start a process, the new process mightinherit these settings. Alternatively, the
command interpreter might store global environment information in its own tables.

236 The User Interface Chapter 7

When it starts a new process, it would tell the kernel not only which program to invoke
but also what the global environment for that process should be.

Local environment settings might have a similar syntax. Often, local settings are
used to give extra information to the process or to select an optional behavior. Such set-
tings often take the form ofparameters, which are optional additions to the command
line that invokes the process. For example, we might have a general-purpose data-
transfer facility called‘‘Transfer.’’ The following are some different invocations of
Transfer with different parameters:

1. transfer work.text work.save.text
2. transfer #c work.text work.save.text
3. transfer #r work.text work.save.text
4. transfer #d work.text
5. transfer #h #col=2 work.text /device/printer

The first call requests that a new file,work.save.text, be created with the contents
copied from work.text. Both files are given as parameters that provide necessary
information to Transfer. The second call is very similar, but an additional parameter,
#c, is given. This parameter specifies the‘‘careful’’ option, which tells Transfer not to
create the new file if a file with that name already exists. Parameters that establish
options are often calledflags. The third call asks Transfer torename the file instead of
copying it. Perhaps the#c flag could be applied here, too. The fourth call does not
request a transfer at all; it asks for the filework.text to be destroyed. The fifth call
asks for the file to be copied to the printer, which is named by a full file name. The flags
ask for a standard header to be printed along with the file (#h) and for 2-column output
to be used in order to save paper (#col=2).

In each of these cases, the command interpreter might simply package all the
parameters (flags as well as other parameters) and present them to Transfer as character
strings without interpreting them at all. In that way, programs can define for themselves
what a parameter should mean, and the command interpreter does not need to know any-
thing about the multitude of flags that have meaning to different programs.

Parameters can be presented to the program by several routes.

� If the command interpreter is a process, it might send the parameters in a message
to the new program. (We discuss messages in Chapter 9.)

� If the command interpreter is part of the kernel, the program can request parame-
ters by service calls.

� The command interpreter can arrange for the new program to start with the param-
eters already stored in its virtual space. (We discuss starting new processes in
Chapter 9.)

1.2 The User Principle

Command interpreters are designed to make the most common operations as easy as pos-
sible. This goal is a human-engineering equivalent of the Cache Principle.

The command interpreter 237

���

User Principle���

Operations that are performed frequently
should be especially easy to invoke.��

�
�
�
�

�
�
�
�
�

The designers of the command interpreter should try to predict and simplify common pat-
terns of invocation.

The first example of the User Principle is the use ofdefault settings. Programs are
often written so that in the absence of special instructions, they do what the designers
assume is the most natural, most frequently desired action. For example, most compilers
on interactive operating systems will not create a listing file unless asked to because most
users won’t want it. However, creating a listing file is an option that can be added to the
environment of the compiler process (typically through a flag). Another example is that
the output of many programs in an interactive operating system is to the user’s terminal.
A change in the environment can redirect the output to, perhaps, a file or a printer.

A second example of the User Principle is the use of a simplebuilt-in shorthand
for a more complex operation. Some command interpreters have a list of standard com-
mands that invoke optional utilities that have names unrelated to the command. For
example, edit may be used to invoke the editor utility, whose real name might be
something complex likeeditor.utility. Delete may be used to delete a file;
the actual program invoked may be the Transfer program shown earlier, which can do far
more than just delete files. The command interpreter forms the correct parameters for
Transfer when given the commanddelete. The list command might invoke the
same program Transfer with different parameters. This use of built-in shorthands frees
the casual user from remembering the many flags available for programs like Transfer.

A third example of the User Principle is theinitialization file. Heavily used pro-
grams tend to acquire a host of options, most of which are irrelevant to most users. The
occasional user who wants to set an option may wish to do so every time the program is
invoked. For example, many users will be happy with the normal prompt given by the
command interpreter. Others will want a customized prompt. Most users may not want a
feature in the text editor that automatically hyphenates text at the end of a line. A few
will want it every time they use the editor. Such customization may be embedded in a
file as a list of initialization settings. The name of the file is related to the name of the
program. For example, initialization instructions for the text editor may be stored in a
file called editor.init. Whenever the text editor is invoked, it first looks for such a
file to initialize its options.

A fourth example of the User Principle isautomatic chaining, which invokes a
frequently needed sequence of programs with a single command. In many installations,
such as university computing centers, users spend much of their time preparing pro-
grams. Some command interpreters provide a shorthand that combines compilation, link-
ing, and execution of a program in one command. For example, a traffic simulation pro-
gram written in Pascal might be compiled and executed by the commandrun
traffic. The command interpreter would see that there is a file in the current working
directory called, for example,traffic.pas, decide that the file is a Pascal source
program, invoke the Pascal compiler in an environment that has the compiler place the
output in traffic.obj, link in the Pascal run-time support routines to build
traffic.load, and then invoke this last file as a process.

238 The User Interface Chapter 7

Sometimes the command interpreter is sophisticated enough to look for files and to
compare their creation dates in order to invoke steps in this chain only if they are needed.
For example, the user might deletetraffic.load because it uses up too much pre-
cious disk space. A laterrun traffic invocation will not invoke the Pascal com-
piler at all but will just repeat the final link step before executing the program. If the user
modifies traffic.pas (to add a feature, for example), then even though
traffic.load exists, run traffic will cause the command interpreter to repeat
the entire compilation and linking because the date ontraffic.obj is earlier than
traffic.pas, so a change must have been made.

Even the cleverest designers cannot predict all the shorthands that a particular user
might want. For example, some users wish to compile all their Pascal programs with a
flag that disallows non-standard features in Pascal. A packaged automatic-chain facility
might be unable to provide this slightly out-of-the-ordinary service. The mechanism can
sometimes be stretched, for example, by letting the automatic chain itself take parame-
ters, which are in turn converted to other parameters that affect the individual steps in the
chain. This solution tends to increase the number of available options and leads to obscu-
rity.

An alternative solution is to let the user build an individual set of shorthands that
accomplish whatever is desired.Personalized shorthands constitute a fifth example of
the User Principle. For example, a user might always wanttransfer to have the
#fake flag set. This flag tells Transfer to delete files in a safe fashion by moving them
to a different directory instead of actually destroying them. The user might invent a per-
sonalized shorthand,delete, for this invocation. In the future, the command inter-
preter will acceptdelete file to mean transfer #d #fake file. Personal-
ized shorthands can be established in the initialization file for the command interpreter.

Automatic chaining can also be personalized. This act leads to a sixth example of
the User Principle. A user who repeatedly needs a particular sequence of actions might
build a command script that contains the desired invocations. The command script can
be invoked instead of the individual commands. For example, to prepare a complex pro-
gram that contains several modules, the user might collect the commands necessary to
compile each of the modules and then link them all together. Command scripts are typi-
cally stored in files. Some command interpreters can distinguish command scripts from
load images and interpret the first but invoke the second.

Introduction of command scripts has had a strange effect on command languages;
they have become more like programming languages. First, they have variables. These
variables are used to hold strings that can be pieced together to form commands or can be
inspected to influence what is done next. Second, they have control structures. Com-
mand scripts often need to repeat a set of operations once for each file in a set or until
some condition is met. If an error occurs, the entire command script might need to ter-
minate. The command script may take one action or another depending on some condi-
tion. Therefore, loop, exit, and conditional control constructs are common in command
scripts. At the least, they have a way to determine if a program ends in error and to take
appropriate action (such as termination) in that case. Third, they have procedures,
insofar as they can invoke other command scripts and pass them parameters.

To maintain a uniform interface, designers of command languages often allow
these same constructs to appear in normal commands presented directly to the command
interpreter. It is unusual, but not unheard of, for a user to submit loop control constructs
as part of ordinary interactive behavior. For example, a user may wish to make backup

The command interpreter 239

copies of all files. The following is a loop command that might be provided by a com-
mand interpreter:

foreach i in * do
transfer i i.bak

end

Each iteration of the loop sets the control variablei to the name of a different file. If the
files have namesRed, Green, and Blue, this loop command is equivalent to

transfer Red Red.bak
transfer Green Green.bak
transfer Blue Blue.bak

The culmination of this tendency is to treat process control as purely a programming-
language issue. One can use the same language for job control and for programming.
This approach has some problems. First, interactive and non-interactive programming
are different enough so that the same constructs are unlikely to be properly tailored for
both. Second, non-interactive programs are read much more often than they are written,
so a considerable percentage of the characters are present to make the program readable.
Such a design is cumbersome when used interactively.

An interesting programming-language approach has been taken by a few operating
systems, notably ITS (Incompatible Timesharing System, for the PDP-10) at Mas-
sachusetts Institute of Technology. The command interpreter and the program debugger
are the same. The debugger has the ability to invoke programs and to interrupt, examine,
and modify them; all these facilities can be useful to a command interpreter.

1.3 Interacting with programs

Once a process has been started, the command interpreter typically retires from the scene
and does not resume execution until the process that has been started is finished. At that
point, it might print completion statistics, such as how long the process ran and how
much that execution cost or the fact that execution failed. If execution fails, the com-
mand interpreter may provide facilities for debugging, such as a main-store dump (typi-
cally useful in batch mode) or an error message. Different error messages might indicate
that the process exceeded its allotted time, made an invalid service call, or tried to access
an address outside its space.

In addition to starting processes and viewing their results, interactive users also
need to manipulate their programs while they are running. Remarkably often, users sub-
mit requests that start programs that are not quite what the user intended. Perhaps some
flags are accidentally omitted. Perhaps the compiler is invoked, and then the user
remembers another change that should be made to the program. Perhaps the request is
not particularly important (for example, viewing the current load on the operating system
to find out why it seems slow today), and the user decides not to wait for it to complete.
Interactive operating systems provide some form of‘‘cancel’’ requestthat can be typed
while programs are running. The effect is that the running process is terminated and the
command interpreter resumes execution. The mechanism involved in terminating the
process is often outside the control of the command interpreter; the device driver for the
terminal notices the‘‘cancel’’ character and forces the running process to stop. The

240 The User Interface Chapter 7

command interpreter notices that the process has stopped and resumes its own execution.
(If the command interpreter is a utility process, it might have executed a service call
‘‘wait for this process to stop.’’) We discuss process control more fully in Chapter 9.

Some operating systems allow a process to stop in such a way that it can be
resumed later. This feature allows the user to alternate attention among several
processes. For example, during program preparation the user frequently switches
between editing and compiling. One process might be a text editor manipulating a For-
tran program. When a change has been made to the program, the editor might be
stopped, therun command given to the command interpreter, and the results of execu-
tion examined. Then the user could resume the editor and try to figure out why the pro-
gram behaved the way it did. It is not necessary to reinvoke the editor, an action that
might take much longer than resuming it.

Another example comes from inter-user mail. A user often reads new mail as part
of the ritual of starting an interactive session. If an entry in the mailbox requires immedi-
ate attention, the user might stop the program that reads mail, direct attention to that
pressing matter, then resume the program and read the rest of the mail.

It is not uncommon on such operating systems for one user to have five or ten
processes, all but one of which are stopped. The command language might provide com-
mands to list the stopped processes and to resume any one of them. One way to depict a
particular process is to display the command that started it in the first place.

Under many operating systems, processes can be started either by the command
interpreter or by other processes. This latter kind is not directly under the control of the
command interpreter. For example, the user might typetransfer #d #fake
#log file.old to tell the Transfer program to deletefile.old in the careful
manner that copies it to another directory. The#log flag tells Transfer to record this
action in a logging file. Instead of performing these operations sequentially, let us sup-
pose that Transfer itself invokes two processes, one to move the file and the other to
create a log entry. A single command has thereby created the beginnings of atree of
processes, which looks like Figure 7.1. In turn, ‘‘move’’ and ‘‘log’’ might generate other
processes. This particular scenario is a bit forced, but remarkably many programs use
other processes to do work for them under operating systems that allow this feature. The
optional ‘‘sort’’ utility, which is used in many applications, is often invoked as a subpro-
cess by such disparate programs as Transfer with the#list flag, which is asked to list
all the files in the directory (sorted alphabetically) and ‘‘checkspelling,’’ which might
first sort all the words in the file that is to be checked, removing duplicates, in order to
reduce the number of words that must be searched in the dictionary.

movelog

transfer

Figure 7.1 A process tree

The command interpreter 241

Process manipulation gains a new dimension when processes invoked from the
command interpreter can sprout trees. What does it mean to ‘‘stop’’ a process? Since
the command interpreter might not even know that the tree exists, it is likely that the only
processes that can be directly mentioned to the command interpreter are the ‘‘top-level’’
ones, the ones that it started. If one of those is stopped, it is reasonable for the kernel to
stop its entire tree. Alternatively, commands might allow the user to direct attention to
any process in the tree and to manipulate just that process.

Interactive users often have two distinct modes of computer usage.

� Highly interactive, as is exhibited during text editing
� Batch-like, as is exhibited during compilation or while running long programs.

While a batch-like program is working, the user might well want to engage in some
other, highly interactive work in order not to waste human time just because the com-
puter is busy on the last command. To serve this need, many operating systems provide a
background facility that allows a process to continue execution but to have the com-
mand interpreter resume without waiting for it to end. The command interpreter can now
be used to start another process, perhaps a more interactive one.

Some operating systems, like RT-11 for the DEC PDP-11, allow at most one back-
ground process and oneforeground (higher-priority, interactive) process. Other operat-
ing systems allow any number of background processes. (In VMS, the administrator may
limit the number of background processes each user may have; in Unix, the limit is built
into the installation.) It is even possible with some command interpreters to change the
status of a process back and forth from background to foreground. (BSD4.2 Unix has
this ability.) Background processes are usually notaffected by the‘‘cancel’’ or ‘‘stop’’
keys that the user might type. Instead, the command interpreter often provides explicit
commands that have the same effect.

1.4 Advanced features

The list of command-language features supported under various operating systems is
quite long; we cannot hope to cover all of them. However, a few words of introduction
to some of the novel features appearing in relatively recent operating systems may be
useful.

Wild cards. We mentioned in the chapter on files that some programs accept
a naming convention for files that allows several files to be specified with one name by
having ‘‘don’t care’’ or ‘‘wild card’’ entries in the name. The Transfer utility, for exam-
ple, might understand* in a file-name component to stand for anything. Thus,
transfer #list traffic.* might generate a list of all files that have ‘‘traffic’’
in their first component.

The wild-card facility can be embedded in various places in the operating system.

242 The User Interface Chapter 7

� In the file server.
� In the command interpreter. Unix takes this approach. Processes that wish to con-

vert wild-card names to ordinary file names start a command interpreter process
that terminates after it performs the conversion.

� In particular utility processes, like Transfer. The Tops-10 operating system for the
DEC PDP-10 takes this approach.

Wild cards can be generalized into file-namepatterns, which might have ways to indi-
cate individual-character wild cards, alternation (the ‘‘or’’ operator), and concatenation
(the ‘‘place one pattern after the other’’ operator). Such patterns are applied to all the file
names in a given set, typically the current working directory. For example, in the C-shell
(one of several Unix command interpreters), one can build complex patterns like this:

[0-9A-F]{new,old}?text*

This pattern matches any file whose name starts with a hexadecimal digit, continues with
either new or old, followed by any one character, followed bytext, followed by
anything. This pattern would match, for example,Bold.textfile.

History. A user often wants to submit the same command twice in a row,
perhaps with some minor changes. For example, the user typesmail fred to com-
pose and send a message to Fred, decides in the middle that the message does not look
right, cancels ‘‘mail,’’ then typesmail fred to start all over. Similarly, the user
might type mail fred and then decide that Betsy should also get a copy of the mes-
sage. In this case, the commandmail fred betsy might have been more appropri-
ate. It is very common for a complex command to be slightly misspelled. The user
wants to fix the mistake and resubmit the command.

Under the User Principle, command interpreters should make it easy to refer to
previous commands so they can be resubmitted, possibly with some changes. The device
driver for the terminal might remember the previous line that was typed. When the user
types the special ‘‘recall line’’ key, the device driver restores that line as if it were typed
again. Intra-line editing might allow the user to fix any mistakes in the line before
activating it with a carriage return. A very similar feature can be built into the terminals
themselves to relieve the device driver of the complexity needed for this service.

The command interpreter can also store ahistory of previous commands. It can be
asked to list those commands and to resubmit any of them, possibly with some
modification. The BSD Unix and VMS command interpreters have a large repertoire of
actions that use a history feature.

Command completion. It can be awkward for the user to type the entire
name of a program or of a file, especially if the operating system allows long file names.
The wild-card facility is a convenient way to avoid typing parts of the file name, but it
can lead to ambiguities. Several files may meet the wild-card specification, but the user
might intend only one of them.

A feature pioneered by Tenex and found in Tops-20 and in an alternative com-
mand interpreter for BSD Unix allows the user to specify as much of a file or program
name as desired. When the user types the ‘‘please complete’’ key, the command inter-
preter finishes the command or file name. The algorithm used by the command

The command interpreter 243

interpreter depends on whether a command or a parameter is to be completed. In the
former case, only legal commands are considered as acceptable completions. In the latter
case, only file names are allowed.

If there is no legal way to complete the fragment or if there are two or more ways,
the command interpreter signals an error (by ringing a bell). If the fragment can be
unambiguously completed by a few more characters, but not to the very end, those few
characters are added. The user can type another key to have the command interpreter list
all the possible completions of the current fragment.

Subordinate command interpreters. If the operating system does not
have a foreground/background scheme, it may still be possible for a user to start several
unrelated activities. All that is needed is for one process to be able to start another and
wait until it finishes. It is a common convention for interactive processes in Unix and
Tenex to accept a command that starts a new command interpreter. A user interacting
with processA who wishes to start processB might askA to start up a new command
interpreter. The new command interpreter may be asked to startB. OnceB is done, a
second request may be given to the new command interpreter. When the user is ready to
return toA, the new command interpreter is told to terminate, andA is active again.

Figure 7.2 illustrates this situation. When the user first logs on, a command inter-
preter (number 1) starts. The user asks command interpreter 1 to start the mail program.
The box around command interpreter 1 indicates that it is waiting for the mail program to
finish. One of the messages the user reads suggests that some recently created software
has a bug. To fix that bug, the user asks the mail program to start command interpreter 2.
Until it finishes, the mail program is waiting, as indicated by the box around it.

The user first tells command interpreter 2 to move to the appropriate working
directory. Then command interpreter 2 is asked to start a text editor so the user can
inspect the program that has failed. The user finds the bug and modifies the file. It is
time now to compile, link, and run the program. The user asks the editor for a new com-
mand interpreter (number 3). Command interpreter 3 is asked to run the compiler. When
the compiler finishes, the linker is run. The first situation shown in Figure 7.2 holds
while the linker is running.

Once the linker finishes, the user will try running the program. The bug is still
there. To return to the editor, the user terminates command interpreter 3. After making
more changes to the program, the user asks the editor for another command interpreter
(number 4). The second situation in Figure 7.2 holds during the next compilation. If all
goes well, the user will terminate command interpreter 4, the editor, and command inter-
preter 2, returning to the mail program. A response can be sent to the person who com-
plained about the bug, and the user can proceed to read the rest of the mail.

As you can see, it can be confusing to have several command interpreters at once.
Each might have a different working directory. It is up to the user to remember the tree
of invocations. Programs must be exited in reverse order to the order in which they are
entered, and they are active only when they are at the leaf of the tree.

Redirection of transput. Programmers would rather not tie a program
into any particular source for input or destination for output. However, these decisions
must bebound at some point; the logical name used by the program must be associated

244 The User Interface Chapter 7

compiler 2

command interpreter 4

compiler 1

command interpreter 3

command interpreter 2

command interpreter 1

link

editor

mail

command interpreter 2

command interpreter 1

activefinishedwaiting

editor

mail

Figure 7.2 A tree of processes

with a physical name of a device or a file. The command interpreter can be in charge of
binding these names. For example, a simulation program might call its input
simulate.in and its output simulate.out. Perhaps the user wants to call this
program several times with different data. Instead of rewriting the program, the com-
mand interpreter could be used. One convention is to set the environment in a global
way:

set associate simulate.in data.one
set associate simulate.out out.one
simulate
set associate simulate.in data.two
set associate simulate.out out.two
simulate
set associate simulate.in data.three
set associate simulate.out out.three
simulate

In this example, the simulation is run three times, each time under a different environ-
ment.

An alternative is to list the input and output files as parameters to the Simulate pro-
gram:

The command interpreter 245

simulate data.one out.one
simulate data.two out.two
simulate data.three out.three

Simulate must discover the binding by examining its parameters.
A very nice alternative is to let Simulate assume that ‘‘input’’ and ‘‘output’’ are

logical names that will be bound by the command interpreter. These two logical files will
be provided to every process that the command interpreter starts. If the user makes no
special arrangements, the command interpreter can direct terminal input to the ‘‘input’’
expected by the process and direct any data placed in the ‘‘output’’ file back to the termi-
nal. If data are to come from or go to a file, that stipulation can be mentioned in the com-
mand line, not as parameters passed to the process but as instructions to the command
interpreter for establishing bindings; for example:

simulate < data.one > out.one
simulate < data.two > out.two
simulate < data.three > out.three

In this example, we have followed Unix syntax, in which< means ‘‘bind the input to the
file named next in the line’’ and> means ‘‘bind the output to the file named next in the
line.’’ Different symbols are used so that the command interpreter can distinguish
between file names and program names. The binding for either input, output, or both
could be specified in the command. Unspecified bindings remain by default bound to the
terminal.

Redirection of transput can be carried one step further. The output of one process
can be directed into the input of a second process. For example, the result of the simula-
tion can be sent to a process that sorts the output before it is placed in a file. Our com-
mands might take this form, again following Unix conventions:

simulate < data.one | sort > out.one
simulate < data.two | sort > out.two
simulate < data.three | sort > out.three

This ability to form ‘‘pipelines’’ colors the philosophy of building programs under Unix.
Many programs are built to be simple elements of a longer pipeline, taking input, per-
forming some transformation (possibly quite simple), and producing output. We discuss
the inter-process communication mechanisms used in Unix to build pipelines in Chapter
9.

Bit-mapped displays. In the earliest days of operating systems, most trans-
put was on punched paper tape or cards. Command interpreters understood certain com-
binations of characters on tape or card to distinguish data from commands. The first
interactive terminals were slow (about 10 characters per second) and noisy as they pro-
duced printed output. Brevity of commands was more important than sophisticated
features. Modern terminals are often quite fast (about 1000 characters per second) and
quiet as they produce characters on a video screen. Many of the features mentioned so
far have been developed for this sort of terminal.

246 The User Interface Chapter 7

A new generation of terminals is now being built. In addition to characters, they
can display figures. Because they have a fairly large screen with computer control over
every dot, they are calledbit-mapped displays. They typically have about 1000 dots per
line and about 1000 lines.

Bit-mapped displays are driven from reserved regions of physical store where a bit
pattern is placed by the program. Since it can take a significant amount of computation
to prepare figures (and sometimes even just letters) for such a device, such terminals are
not yet standard on most interactive-multiprogramming machines. However, they have
appeared on personal computers, where no one cares if extra computation is needed to
present a better user interface.

Bit-mapped displays are often packaged with a pointing device that allows the user
to specify a particular region on the display. Pointing devices have different designs.
Some display screens are overlaid with a sensitive grid that can sense the touch of a
finger. A separate device, usually called a ‘‘mouse,’’ can be moved over a tablet on the
desk. Its motion is conveyed to the computer, which can then display acursor (a visual
indicator of the current location) at the corresponding place on the display. The mouse
may have a few keys that can be depressed to send signals to the computer.

Bit-mapped displays change the character of interaction. We will discuss three
innovations: menus, icons, and windows. Amenu is a list of commands that are legal in
the current situation. Instead of typing commands to the command interpreter, the user
requests a menu to be placed somewhere on the screen. The pointing device is used to
point to the entry that is desired. Some menu entries, when selected, expand into sub-
menus. For example, assume that the user wants to deleteone.out. The current menu
might have the following entries:

compile
file
status
edit
print

After the user selectsfile, the menu changes (or a new menu is displayed elsewhere
on the screen) that looks like this:

rename
copy
move
link
delete
alias
view

The user selectsdelete. Now a third menu appears with the names of all the files.
The user selectsone.out, and the file is deleted.

Although this use of menus requires lots of computation (especially to provide the
names of all the files), it takes only three keystrokes for the user. Each keystroke could
involve one of the keys on the mouse. If the user wants to submit a command that is not
on the menu, or requires flags that are not in the menu, there is usually a way to revert to
line-oriented command language.

Icons are graphical representations of objects, such as files or programs, and
abstractions, such as today’s work or a directory. Icons can be pointed to by a mouse and
moved about on the screen. Moving an icon can have an equivalent effect on the object.
For example, a file can be moved from one directory to another by dragging its icon

The command interpreter 247

across the screen. It can even be discarded by placing its icon in the ‘‘trash can’’ icon!
Windows are regions of the display established for different purposes. Each pro-

cess could have its own window. If several processes are running at once, output can be
displayed for all of them. When a process fills its window, it might be blocked until the
user has had a chance to see the output. Alternatively, data that disappear from the win-
dow can be saved in a file. Windows can be manipulated to change their size and posi-
tion and to determine which one is on top if they overlap. Entire windows can be shrunk
to icons that are stored on the screen to be re-expanded when needed. Data in one win-
dow can be selected for copying into another window. In this way the output of one pro-
gram can be used as input to another.

2 INTERACTIVE PROGRAMS

All interactive programs should provide a good interface to the user. Some of the charac-
teristics that improve the user interface are listed here.

� The interface should be easy to learn. Menus provide an especially good inter-
face for this purpose. Single-letter commands can be very difficult to remember.

� Facilities intended to aid the novice should not get in the way of the experi-
enced user. Many programs allow the user to establish the level of verbosity, for
example. An experienced user may prefer terse error messages and a terser input
syntax.

� It should be possible to undo actions. This feature decreases the anxiety felt by
the novice and permits a greater range of exploration. Of course, not every appli-
cation can allow undoing. It may not be possible to unsend mail, for example.

� It should be possible to cancel actions in progress.
� The program should provide help on request. Both general help and help about

individual commands should be provided. Many help schemes allow the user to
keep asking the same question. The first answer is very brief. Each subsequent
answer is an expansion on the previous one. If individual commands invoke new
programs, requests for help can be forwarded to those programs.

� Words used for commands should be verbs, and words for arguments should
be nouns. These commands might be abbreviated (for example, reduced to a sin-
gle keystroke), but if they are echoed, it is nice to echo the entire word. The
echoed version may even include prepositions to make the command seem even
closer to English. For example,m foo bar may be echoed asMove foo to
bar.

� Each command should have a response. It is especially helpful if the response is
different for different commands.

� If the command cannot complete quickly, there should be some indication that
work is in progress. Otherwise, it is easy to think that the request is being ser-
viced when the program really is waiting for some more input.

� Humorous messages should be avoided. The computer isnot human, and
attempts to make it appear human can be irritating. In addition, such messages can

248 The User Interface Chapter 7

be misunderstood. For example, for very obvious syntax errors, one compiler gen-
erates the message, ‘‘The details of this error can be found in your code.’’ The
message is not very helpful, even if itis cute.

� Different interactive programs should use similar commands. It can be confus-
ing if the termination command isquit for one program,exit for another, and
ZZ for a third.

3 UTILITY PROGRAMS

The command interpreter utility is important because every user needs to deal with it.
Other utility programs are also important for various classes of users. The success of an
operating system often depends on the quality of these utility programs. We will mention
a number of these programs here but will not dwell on their organization or their features.

3.1 Document preparation

On many computers, a very large proportion of a user’s time is spent preparing docu-
ments of all sorts. Documents range from memos to technical reports, user guides, and
books. This book itself was composed with the aid of tools provided by the BSD Unix
operating system.

At the moment this sentence was composed, 15 out of 47 user processes were run-
ning a text-editing program. The text editor is often the first program invoked to build a
document. A text editor is an interactive program that allows the user to create and
modify text files. Some editors show only one line of the file at a time; others use a full
display. The most advanced editors use bit-mapped displays and can show several win-
dows into one file or several files at the same time. Such editors can sometimes embed
pictures into the middle of text files.

Once a document has been entered into a file, spelling checkers and style checkers
can be useful. Spelling checkers complain if they can’t find words in their dictionary,
and most understand common prefixes and suffixes. A few will suggest a menu of
respellings of disputed words and will accept new words to be added to the dictionary.
Style checkers detect potentially poor usages, such as ‘‘a number of’’ or ‘‘the fact that,’’
which might be improved by rewriting. Style checkers can also report the percentage of
nouns and verbs used.

The next step is often a text-formatting program. Text formatters can produce out-
put acceptable to a wide variety of devices, including display screens, line printers, high-
resolution dot-matrix printers, and phototypesetters. These programs usually take source
files that contain both text and formatting commands, such as ‘‘start new paragraph,’’
‘‘number every page,’’ ‘‘don’t hyphenate,’’ and ‘‘make wide columns.’’ Sometimes
these programs can format mathematical formulas, tables, footnotes, bibliographic

Utility programs 249

references, and evendrawings. In other cases, these features are provided by separate
programs that convert higher-level descriptions into more primitive pieces. For example,
formulas can be converted into page-location and font-selection commands. Simple
drawings can be converted to short line segments.

Some editors for bit-mapped display terminals combine the functions of text edit-
ing and formatting. The terminal displays a reasonably accurate facsimile of the docu-
ment that will actually be produced.

3.2 Program preparation

University environments often have computer installations where a large proportion of
time is spent building programs. A similar situation holds in software houses and
research labs. The ‘‘life cycle’’ of programs involves the following steps:

(1) Define the requirements.
(2) Choose data structures and algorithms.
(3) Write a program.
(4) Verify that the requirements are met.
(5) Compile, link, and run the program.
(6) Test the program and diagnose the errors.
(7) Maintain the program.

Unfortunately, these milestones are not sequential. Step 4 could discover that the
requirements are not met, in which case the programmer may need to return to step 3 (or
possibly step 1). Step 5 often turns up problems, both major and minor, that force the
programmer to retrace some steps. Step 6 turns up harder problems, some of which may
be very difficult to diagnose. As errors are corrected, the programmer may have to
retreat all the way to step 1 or, more commonly, to step 3. Step 7 involves keeping the
program running even though the requirements may change. It is often performed by a
group of people different from the group involved in the other steps.

Tools exist to assist the programmer during various steps in the life cycle of a pro-
gram. There are no particularly good tools for the first two steps. Program requirements
can sometimes be written as assertions about the relationship between input and output;
these assertions have a mathematical flavor.

Writing the program usually involves the text editor, which may have some
features specifically designed for editing programs. These features include automatic
indentation, checking for parenthesis balance, and ability to find declarations of variables
quickly. Some experimental editors are tailored to particular programming languages.
They can enforce syntactic correctness, prompt the programmer for declarations, correct
syntax errors, and even check that types match.

If the requirements for the program are expressed in mathematical form, some
experimental tools can help verify that a given program satisfies those requirements.
However, these tools are still quite primitive and expensive.

Many tools have been written for the compilation phase. Modern languages are
very helpful in promoting a clear program structure and in providing information (like

250 The User Interface Chapter 7

data types) the compiler can use to check a certain amount of logical consistency.
Modern compilers are very helpful in reporting syntax errors in the source program.
Some can automatically switch back to the editor at the point of error to allow the pro-
grammer to fix it and then continue. Compilers often pass over the program several
times, each time accomplishing a different transformation. The first pass might expand
macros, the second generate assembler code, the third improve the assembler code, and
the fourth create an object file. After the object files have been built for the modules that
constitute a program, the linker combines them, searches libraries for missing names, and
builds a load image. Tools like the Make utility of Unix accept a description of the ways
compilation units depend on each other. When one unit is modified, only the necessary
modules are recompiled and relinked, according to recipes supplied by the programmer.

Testing the program has two stages.

(1) Find the obvious errors.
(2) Try enough cases to be convinced that the program will work in every case. A

test suite might be specified by the requirements developed in step 1.

Most debugging of this sort uses extra output statements to report the inter state of the
program. As erroneous outputs are found, more output statements are inserted to deter-
mine where the mistake was made. Suddenly, the programmer will get a flash of insight,
determine the problem, and fix it.

Debugging tools can be helpful during this stage. Debuggers are programs that
allow the programmer to step through the program under test little by little, examining
the values in variables at any point during this execution. The debugger might be able to
display the source program associated with the current point of execution, and it might
accept source-language statements as commands. The amount of execution before the
program is stopped can be specified by number of statements, number of executions of a
particular statement, or modification of a particular variable. Routines can be invoked
out of order, and both variables and instructions can be modified. Part of a display may
be devoted to a continuous view of the variables the programmer wishes to examine.
The program might be displayed from various points of view, including a flowchart, a
picture of the run-time stack, and the original text.

Maintaining a program is related to managing a large programming effort. New
versions of modules are created by different people at different times for different rea-
sons. At any time it might be useful to roll back to a previous version to see how it
worked before it was modified. If the file manager provides versions on files, that facility
can be useful in maintaining a program. Utility programs have also been written that
provide for ‘‘checking in’’ and ‘‘checking out’’ files. When a file is checked in, these
utilities prompt for a description of the most recent change and store it in the file for
future reference.They also ensure that when several programmers are simultaneously
modifying the program, the modifications are merged instead of having one overwrite the
other.

3.3 Data management

Utility programs 251

The computer is a convenient place to store a great variety of information. We have seen
how a directory structure assists the user in organizing files and how structures in files
can speed up searches. A typical operating system offers a large number of utility pro-
grams for manipulating information.

The easiest form of manipulation affects entire files. The Transfer program that we
have been using as an example exists in some form on every operating system. Not all
functions are necessarily provided by a single program, but the following operations are
often supported on files.

print (on a printing device)
display (on an interactive terminal)
copy (to a new file)
move (to a new place)
rename
delete
reformat (changing character codes, indentation, or headings)
permit (change access rights)

In addition, the following operations on directories are supplied:

list (tell which files are in the directory)
make (a new directory)
delete (an entire directory)
rename
move (to a new place)
permit (change access rights)

Various retrieval methods are often provided for information. For example, utili-
ties are often provided to find which files satisfy some criterion. The criterion can be
based on the name of the file, the date on which it was created or modified, or its type
(text, load image, and so forth). Lines in text files that match some pattern can be
printed.

Sorting is an important activity in many algorithms. Since the best method for
sorting depends on the type and number of data, ‘‘sort packages’’ have been built that
create the most appropriate sorting program for a particular application.

Large-scale database management systems are found in some installations. They
may allow many users to inspect and modify the database simultaneously. The user
interface to these programs is often a command language specially tailored for forming
queries such as ‘‘find all customers in Indiana who paid their last bill within 1 week of
receiving it and whose bill was at least twice as high as the average bill.’’

Documents are not the only objects that users wish to manipulate interactively.
Structure editors allow users to enter and modify such varied objects as printer fonts,
VLSI circuit layouts, pictures, stored speech, and file directories. Integrating these vari-
ous object types into a common editing paradigm is a subject of current research.

252 The User Interface Chapter 7

3.4 Communication

The trend of the last few years is toward the use of computers as tools for allowing peo-
ple to communicate with one another. Programs for mailing notes between users of the
same interactive computer have been available for years. These notes are collected in
files that serve as mailboxes and can be read by a program that the recipient can invoke.
Notification that mail has arrived is often by a short message to the terminal of the reci-
pient or by a note when the recipient starts a session with the operating system. The
command interpreter can also check the mailbox and tell the user if new mail has arrived.
Programs also allow two users to direct notes to each other’s terminals without using a
mailbox.

A different sort of communication involves several computers at once. Computers
that are connected for transfer of data are said to belong to anetwork. Small ‘‘satellite’’
computers can be linked to large central computers either by permanent lines or by occa-
sional telephone connections. The satellite computers might be used for everyday com-
putation. The central computer might be used for archival data storage and large-scale
computation that exceeds the capacity of the smaller machines. An installation might
connect its several computers using a local area network to allow sharing of data and
computation. Programs are often provided for data transfer and remote computation. A
single operating system might control all the machines, making the existence of the net-
work invisible to typical users. The Locus variant of Unix is a particularly successful
implementation of this idea.

In the last few years, the two ideas of computer mail and computer networks have
been combined. Many national and international computer networks exist. The UUCP
network connects perhaps 10,000 installations, mostly in North America, but including
Korea, Israel, and Europe. There is a similar network in Australia. The Arpa Internet
covers thousands of installations in North America and Europe. BITNET has over 1500
computers at university computing centers, mostly in North America, Europe, Japan, and
Israel. CSNET connects dozens of computers in computer science departments in
universities in the United States and Canada as well as computer-industry research
laboratories. Computer corporations often have internal networks connecting their sites,
such as IBM’s VNET and Digital Equipment Corporation’s Easynet.

These networks are used mainly for computer mail, although more general data
transfer and even remote computation are possible in some cases. We will return to the
topic of networks in Chapter 9 when we discuss inter-process co-operation.

4 PERSPECTIVE

Although the range of computers and their operating systems is quite large, certain com-
mon themes apply to all of them. The User Principle leads to similar solutions on both
large and small computers. For example, a personal-computer user needs a command
interpreter just as much as a batch user on a central mainframe computer. Both have
tasks that must be submitted to the computer. The convenience of having several

Perspective 253

processes at the same time is just as convenient for the mainframe user as for the hobby-
ist.

It is true that small home computers currently do not have the main or secondary
storage needed to provide large-scale fancy services. Nontheless, the trend toward bit-
mapped graphics, multiprogramming, and well-designed command languages is being
felt even in these machines.

We have described the command interpreter as a single entity used for specifying
processes to be run and their environments. As we have seen, any interactive program
requires some form of command interpretation. Unfortunately, each program usually has
its own command language and its own peculiarities. Even the command used to ter-
minate a program is often different for each program in the operating system. It is not
clear whether this chaotic situation is due to the unorganized way in which utility pro-
grams have been designed or whether the operations performed by each utility are unique
and require unique syntax.

Several attempts to alleviate this chaos have shown some success. One direction is
to provide a subroutine package that each interactive utility may use to provide a uniform
structure for the command language. For example, Tenex provides a package of
command-completion subroutines. Machines with bit-mapped screens can provide
menu-manipulation packages. Another direction is to provide exactly one command
interpreter program. Each utility specifies to the command interpreter the commands that
it is willing to accept and their structure. Integrating all interactive programs by a com-
mon command interface is related to integrating all structure editors by a common inter-
face.

5 FURTHER READING

Good’s article (1981) presents a clear description of the desired characteristics of a com-
mand interpreter. It has an extensive bibliography that can guide you to other literature
about command interpretation. Kernighan and Pike (1984) have written an extensive
introduction to the Unix command interpreter and the Unix environment in general. One
description of a window package can be found in the paper by Meyrowitz and Moser
(1981). Another window package intended for use in a multiple-process environment has
been described by Lantz and Rashid (1979). A number of integrated programming
environments have been built, including the Cornell program synthesizer (Teitelbaumet
al., 1981) and the Pascal-oriented editor (Fischeret al., 1984). An extremely fancy text
formatting program, TeX, is described by Knuth (1984). One example of the attempt to
unify all program interaction under the aegis of editing is the recent thesis by Dewan
(1986).

254 The User Interface Chapter 7

6 EXERCISES

1. Describe the features available in a command language with which you are fami-
liar. What features described in this chapter are not available? Are these omis-
sions due to design outside the command interpreter, or could they be added? For
those that could be added, suggest a syntax. For those that cannot be added,
explain why.

2. In what way are the commands one might give an interactive file manager similar
to the commands one might give a text editor? In what way are they different?

3. If the operating system does not provide for any inter-process data transfer, how
can the command interpreter establish a pipeline that directs the output of one pro-
cess into the input of another?

4. How do pipelines of processes and the ability for processes to start subordinate
processes interfere with each other?

5. Find out what computer networks are accessible to your computer. What is the
form of a mail address on these networks?

6. A message sent to someone’s terminal can be a nuisance to the recipient. Design
some mechanism to allow users to restrict incoming messages.

7. It was recently discovered that the ability to send arbitrary messages to someone’s
terminal can introduce security problems. The problem arises because a debugging
feature of the terminal allows it to enter a mode in which it echoes all data coming
from the computer back to the computer. How do the two features, messages and
terminal debugging, combine to create a problem?

8. Some operating systems allow programs to load the terminal input buffer with
characters as if the user had typed them in. These characters are then displayed;
the user can modify them and activate the line. When would such a facility be use-
ful? When would it be harmful?

Exercises 255

chapter 8

CONCURRENCY

As operating systems were first built, an annoying sort of problem was discovered: Rou-
tines invoked from interrupts sometimes modify data that are in the midst of being
inspected by the interrupted program. The modifications can be benign, like appending
to the end of a list, or disastrous, like modifying a linked list in such a way that the inter-
rupted program follows a dangling pointer.

Such problems crop up in various contexts within operating systems. In Chapter 5,
we saw that a circular buffer pool can be simultaneously filled by a process and emptied
by the kernel. It would be erroneous for the process to put new data in the buffer that is
currently being emptied. In Chapter 6, we encountered read/write and write/write
conflicts in file use. We invented transactions to provide synchronization atomicity to
prevent such conflicts. If we allow several processes to share parts of their virtual store,
similar conflicts arise. As we suggested in Figure 3.23, the kernel of the operating sys-
tem may be composed of separate tasks, each of which fulfills one particular function.
These tasks may communicate through shared data.

All these cases involve several activities sharing a common data area. What hap-
pens can depend on the order in which the activities access the data. Some orders give
fine results; some give incorrect but not fatal results; others are disastrous. For example,
in a video game, it is fine if we move the hero before the monster. It is incorrect to
decide where each will go before moving the other, because they could end up in the
same location on the screen. It is disastrous if such overlap leads to dangling pointers
that cause the game to fail. When two cooks are working on the same soup, it is fine if
one chops onions while the other measures barley. It may even be acceptable for them to
add these ingredients at the same time. But if both independently decide to add salt, the
result can be inedible. In this chapter we will present methods for ensuring that different
activities sharing access to common data give predictable results. This general topic is
known asconcurrency control. We use the termactivity to avoid specifying whether
our entities are processes, kernel tasks, interrupt-driven procedures, or DMA transfers.

From one point of view, shared data can be considered a resource that the operat-
ing system must manage to ensure correct use. The problem is therefore in the domain of

256

operating systems. From another point of view, most of the solutions we will look at
have a linguistic flavor; that is, we will build programming-language structures to help us
enforce our policies and hide the complexity of the algorithms. To some extent, there-
fore, our problem is in the domain of programming languages. Concurrency control is
not the only problem in which operating systems and programming languages have
mutual interests. We will touch upon communication later as another example.

1 THE PROBLEMS

Concurrency control is a problem of resource management. When we looked at alloca-
tion of sequentially reusable resources, wecharacterized policiesas liberal or conserva-
tive. The same characterizationapplies in the realm of concurrency control. A policy
can be very liberal, allowing shared data to be accessed almost whenever an activity
pleases. Such a strategy achieves the goal of simultaneous access and a high degree of
parallelism. The danger of liberal strategies is that some execution orders lead to errone-
ous results. At the other extreme, a policy can be very conservative, blocking accesses
until it is certain that erroneous results cannot arise. The danger of conservative stra-
tegies is that activities are unable to respond efficiently to real-time events.

Deadlock and starvation are dangers for any policy that occasionally blocks activi-
ties. As we saw in Chapter 4,deadlock occurs when activities are waiting for each other
so that none can run, andstarvation is a situation in which some blocked activity is con-
sistently passed over and not allowed to run. A related danger islivelock, a situation in
which the algorithm that decides whether to block an activity continues to run without
reaching a decision. A special case of livelock isbusy waiting, in which an activity uses
computational resources without making progress as an alternative to blocking. Busy
waiting is not objectionable if there is no other work worth doing during the wait.

Before we proceed with solutions, let’s review the typical situation in which simul-
taneous access can lead to errors.

process A process B

1 TmpA := x; TmpB := x;
2 TmpA := TmpA + 1; TmpB := TmpB + 1;
3 x := TmpA; x := TmpB;

Assume that TmpA and TmpB are variables local to processesA andB and that x is a
variable shared between them. Assume that x starts with value 0. After bothA andB
have finished their fragments of code, x has the value 2 if we are lucky and 1 if we are
not: If both processes execute statement 1 before either executes statement 3, then each
will read an old x value of 0 and update it in line 3 to a 1.

Here is a simpler situation that can also lead to trouble.

The problems 257

process A process B

1 x := 3; x := 5;

The resulting value of x can be either 3 or 5, depending on which process finishes
second. If the constants were not small, like 3 and 5, but were so large that several words
were needed to store them, these assignments might take several machine instructions.
The instructions could overlap in such a way that the answer is neither whatA intended
nor whatB intended.

We usually assume that certain operations, such as assignment into main store, are
atomic and thatarbitration takes place at some level within the computer hardware: If
two requests arrive simultaneously, they are selected in some sequential order. All our
methods will depend on hardware arbitration at some level. We will assume that two
requests made simultaneously to main store are serviced consecutively. Such requests
can arise when several computers are connected as a multiprocessor. In uniprocessors,
each machine instruction is usually atomic. Traps and interrupts, which can cause a pro-
cess switch, are delayed until the current machine instruction is finished. Even here,
some long instructions (like block copy) may be interruptible. In addition, missing-page
traps can occur in the middle of an ordinary instruction.

1.1 Mutual exclusion

The problem ofmutual exclusion is to ensure that two concurrent activities do not
access shared data at the same time. As we have seen, arbitration in the hardware is a
form of mutual exclusion. We will see how it can be extended to provide exclusion for
more complicated operations.

Instructions that must be executed while another activity is excluded are grouped
into regions. A region often contains more than one access to the shared data. For
example, the assignment

x := x + 1

must refer to x twice. On some machines, two or more instructions are needed to accom-
plish this assignment. They are all part of the same region. Two regionsconflict if exe-
cution of one requires that the other not be executed at the same time. By definition, all
regions conflict with themselves. However, the region just shown would not conflict with
a region that increments y instead of x.

A typical way to express mutual exclusion is to surround regions by delimiters like
BeginRegion and EndRegion, as shown here.

258 Concurrency Chapter 8

process A process B

1 BeginRegion; BeginRegion;
2 x := 3; x := 5;
3 EndRegion; EndRegion;

The form of the delimiters, exactly what a region means, and how it is implemented dis-
tinguish the methods we will survey. In all cases we can look upon regions as a way of
imposing a degree of determinism on a non-deterministic situation, since we can’t predict
when interrupts will happen, when activities will be scheduled, or the relative speeds of
truly simultaneous activities in a multiprocessor.

1.2 Synchronization

Mutual exclusion prevents an activity from entering a region until other activities are out
of conflicting regions. If we want to prevent an activity from continuing until some more
general condition is met, we say that we wish tosynchronize the activity with the condi-
tion. Synchronization is a generalization of mutual exclusion.

Occurrence ofconditions marks the passage of time. Synchronizing with those
conditions achieves a common notion of time among activities. This idea of common
time gives rise to the word ‘‘synchronization.’’

Since synchronization is a generalization of mutual exclusion, we can expect that
the techniques developed for solving the mutual-exclusion problem are also useful for
achieving synchronization. We will test this expectation by presenting various synchron-
ization problems. The first one is best described by asynchronization graph, which
shows precedenceconstraints that govern when actions may begin. Figure 8.1 shows the
graph we will discuss. ActionA has no preconditions. Once it has finished, actionsB
andD may start. As soon asB has finished,C may start, butE must wait for bothB and
D to finish. I may not start until everything else has finished. Each arrow in this graph is
a synchronization step. It represents the condition that the action at its tail has finished.

There are many ways to cast this graph into a program. We might code each of the
nine actions separately and provide for explicit synchronization. Alternatively, we could
cast each row as a separate activity. The first activity would executeA, thenB, thenC.
Synchronization between these pieces would be implicit. The second activity, which
executesD, E, andF, would synchronize with conditions created by the first activity in
three places. The last activity is similar. Another alternative is to represent each column
as an activity.

Choosing an alternative affects which synchronizations are implicit and which are
explicit. It also affects how we perceive the flow of control. For example, this synchron-
ization graph could represent the steps needed to complete three Fortran compilations in
a simple operating system. Each compilation is represented in one row. The row
represents, for example, reading the source program from disk, compiling, and writing
the result to tape. If there is only one disk drive and one tape drive, and we don’t allow
two compilations to proceed simultaneously, theprecedenceconstraints in the graph

The problems 259

IH

FE

CB

G

D

A

Figure 8.1 A synchronization graph

properly limit the amount of concurrency.
If we treat each row as a separate activity, then interactions between reading a pro-

gram, compiling it, and outputting the result are implicit; interactions between this pro-
gram and another are explicit. If we treat each column as a separate activity, then we
have a card-readeractivity, a compilation activity, and an output activity. Each signals
the next when it has performed all it needs to with respect to one Fortran compilation.

Later we will introduce theproducers-consumers problem andthe readers-writers
problem as more complex synchronization tests. We will also return to the dining philo-
sophers problem, which we introduced in Chapter 4.

2 MECHANISMS

We will now turn to mechanisms that can be used to provide mutual exclusion and syn-
chronization. We will start with simple but conservative techniques and move toward
more complex, liberal ones. In each case we will show how the BeginRegion and
EndRegion primitives are built.

All mechanisms for mutual exclusion and synchronization depend ultimately on
the synchronous nature of hardware. Some rely on the fact that processors can be made
uninterruptible. Theseprocessor-synchronous methods work only for individual pro-
cessors. Others rely on the fact that main store can service only one access request at a
time, even in a multiprocessor. Thesestore-synchronous methods have a wider range of
applicability.

260 Concurrency Chapter 8

2.1 Disable interrupts

Most computer architectures allow interrupts to be disabled, perhaps on a selective basis.
If a device signals an interrupt while interrupts are disabled, the new interrupt will be
postponed until interrupts are again allowed. If activities are preempted only when an
interrupt occurs, exclusion can be enforced by disabling interrupts while any activity is in
a region. Since no interrupts arrive, the current activity will be able to complete the
instructions in its region before any other activity starts executing in a conflicting region.

Adjusting the interruptibility of the computer leads to a processor-synchronous
technique for mutual exclusion. The BeginRegion and EndRegion procedures look like
this:

1 procedure BeginRegion;
2 begin
3 DisableInterrupts;
4 end BeginRegion;
5
6 procedure EndRegion;
7 begin
8 EnableInterrupts;
9 end EndRegion;

Disabling interrupts can be quite fast. A single machine instruction often suffices
to change the interrupt state of the machine. However, this method has some unfortunate
properties.

� Once an activity has entered a region, real-time events, like devices that need ser-
vice, cannot be treated until the activity has left the region. Therefore, lengthy pro-
cessing in a region is usually unacceptable. This property is due to the fact that
disabling interrupts is extremely conservative.

� It excludes not only potentially conflicting activities that might otherwise access
shared data but also all activities whatsoever, no matter what their purpose.

� One reason a region might be lengthy is that the program might have to wait for
some event before continuing. For example, the program might be waiting for a
device to become available. The programmer should not put waits inside regions.

� The technique fails on multiprocessors because it is usually not possible for a pro-
gram on one machine to block interrupts on other machines. Even if interrupts can
be disabled on all machines, conflicting activities can still be executing simultane-
ously.

� The programmer must be careful to ensure that all paths from the region go
through code to release exclusion by enabling interrupts once again. It is easy to
overlook some path and introduce a deadlock.

� Another pitfall involves nested regions. If procedureA calls procedureB from
inside a region andB also enters a region,B will re-enable interrupts during its
EndRegion operation, relaxing exclusion beforeA was ready to do so. (See the
exercises at the end of this chapter.)

Mechanisms 261

2.2 Busy wait on MutEx

The method of disabling interrupts lets any activity into a region but prevents any other
activity from running while the first one is in the region. A different approach is to wait
at the entry to a region until it is safe to continue. We can introduce a Boolean variable
MutEx (for Mutual Exclusion) that is set to true when an activity is in a region and false
otherwise. We then code BeginRegion and EndRegion as follows:

1 var MutEx : Boolean := false;
2
3 procedure BeginRegion;
4 begin
5 while MutEx do
6 null; { that is, do nothing }
7 end;
8 MutEx := true;
9 end BeginRegion;
10
11 procedure EndRegion(Who : Activity);
12 begin
13 MutEx := false;
14 end EndRegion;

Unfortunately, this store-synchronous solution is wrong. If two activities enter BeginRe-
gion at about the same time, they might both get past the loop in line 5 and enter the
region. The problem is that an activity that decides to enter the region at line 5 does not
prevent others from entering as well until line 8. By then it may be too late. We will fix
this problem when we look at locks.

We introduce this ‘‘solution’’ to demonstrate that even though it fails for mutual
exclusion, busy waitingdoes suffice to implement the synchronization graph of Figure
8.1. We will use the following convention: Every activity in the graph is associated with
a shared Boolean variable ‘‘Done.’’ For example,A is associated with Done[A]. We
then build two utility procedures, Finishing and WaitFor:

1 var
2 Done : array [Activity] of Boolean := false;
3
4 procedure Finishing(Who : Activity);
5 begin
6 Done[Who] := true;
7 end Finishing;
8
9 procedure WaitFor(Whom : Activity);
10 begin
11 while not Done[Whom] do
12 null;
13 end;
14 end WaitFor;

The code for a few selected activities could look like this:

262 Concurrency Chapter 8

1 activity A:
2 perform A’s work;
3 Finishing(A);
4
5 activity B:
6 WaitFor(A);
7 perform B’s work;
8 Finishing(B);
9
10 activity E:
11 WaitFor(B);
12 WaitFor(D);
13 perform E’s work;
14 Finishing(E);

Even though both Finishing and WaitFor use the Done array, we don’t have to worry
about simultaneous access, since only one activity will ever call Finishing to modify any
particular value in that array. Other activities may call WaitFor, but they only inspect the
array.

If we treat each row in the graph as a separate activity, some of the explicit calls to
WaitFor and Finishing are no longer needed:

1 activity ABC:
2 perform A’s work;
3 Finishing(A);
4 perform B’s work;
5 Finishing(B);
6 perform C’s work;
7 Finishing(C);
8
9 activity DEF:
10 WaitFor(A);
11 perform D’s work;
12 Finishing(D);
13 WaitFor(B);
14 perform E’s work;
15 Finishing(E);
16 WaitFor(C);
17 perform F’s work;
18 Finishing(F);
19
20 activity GHI:
21 WaitFor(D);
22 perform G’s work;
23 WaitFor(E);
24 perform H’s work;
25 WaitFor(F);
26 perform I’s work;

2.3 Switch variable

A more liberal store-synchronous mechanism for ensuring mutual exclusion between two
activities is for them to share a new variable called aswitch. This variable lets either one
or the other enter its region. We depend on the synchronization atomicity of main store

Mechanisms 263

to arbitrate simultaneous accesses to this variable.
In the following example, the switch variable is called Turn:

1 type Activity : (A, B);
2
3 var Turn : Activity := A;
4
5 procedure BeginRegion(Who : Activity);
6 begin
7 while Turn <> Who do
8 null;
9 end;
10 end BeginRegion;
11
12 procedure EndRegion(Who : Activity);
13 begin
14 if Who = A then
15 Turn := B
16 else
17 Turn := A;
18 end;
19 end EndRegion;

In line 3, we initialize the switch variable to point to activityA. If A calls BeginRegion,
the condition on thewhile in line 7 will be false, so BeginRegion will return. IfB tries to
enter its region, it will be blocked waiting for the switch in line 7. Turn will becomeB
only afterA has released the switch by calling EndRegion.

Switches are only slightly better than busy waiting.

� They correctly allowA andB to execute in conflicting regions, even ifA andB are
on different machines in a multiprocessor. IfA andB call BeginRegion simultane-
ously, they will not conflict in their use of Turn, since BeginRegion only examines
Turn without changing it.A and B will never call EndRegion simultaneously
because they can’t both be in their region at once.

� They may be generalized to more than two processes.
� Switches are more liberal than disabling interrupts. Unrelated conflicts are handled

by different switch variables. Therefore, two activities can be executing in non-
conflicting regions at the same time. For example, assume that there are two
shared variables, x and y, and that activityA uses just x, activityB uses both x and
y, and activityC uses just y. We would use one switch variable, TurnX, with
valuesA and B, to protect variable x. A different switch variable, TurnY, with
valuesB and C, could protect variable y. WhenB wishes to enter a region, it
would specify not only its own name (B), but also which switch variable it wants to
use.

� If several switch variables exist and a single activity might want to be in a com-
bined region protected by several different switch variables, there is a danger of
deadlock because switch variables are serially reusable resources. A hierarchy of
switch variables can prevent this problem. We used the same idea in Chapter 4
when we introduced hierarchical allocation of sequentially reusable resources.

� When an activity is waiting to enter its region (line 7), it performs no useful work
while it consumes computational resources. If activities are competing with each
other on a single processor, these busy waits waste time because no other produc-
tive action takes place, even though there is some activity that could make use of
the time (namely, the activity that is in the region). If activities are on different

264 Concurrency Chapter 8

processors, we might not mind this waste of time so much because all activities
that can make use of a processor resource might be on machines of their own.
Still, a busy-waiting activity consumes main-store cycles, which are shared among
all the processors. Even if other activities could run, the Hysteresis Principle tells
us that busy waiting is still reasonable if the expected waiting time is less than one
process-switch time. Very long busy-wait times tend to create aconvoy
phenomenon, in which many activities end up waiting for the same region. The
entire convoy tends to collide at the next region, too, leading to worse contention
than might have been expected.

� This solution forcesA and B to alternate entry into their regions. IfA needs to
enter its region only occasionally butB needs to do so frequently,B will be
blocked waiting for the region most of the time, even thoughA is not currently in
the region.

2.4 Non-alternating switch

The principal drawback of the switch method is the strict alternation it imposes on
conflicting activities. A non-alternating switch uses a switch variable and two auxiliary
Boolean variables that indicate whether the two activities are currently interested in
entering their regions. We will store them in an array for convenience. Here is the code
that implements this store-synchronous method:

1 type Activity = (A,B);
2
3 var
4 Turn : Activity := A;
5 Interested : array [Activity] of Boolean := false;
6
7 procedure BeginRegion(Who : Activity);
8 var Other : Activity; { the other activity besides Who }
9 begin
10 if Who = A then Other := B else Other := A end;
11 loop "outer"
12 { we exit when we may enter our region }
13 Interested[Who] := true;
14 repeat { busy wait if our turn, Other interested }
15 when not Interested[Other] exit outer;
16 until Turn = Other;
17 { we should stop objecting; it’s not our turn. }
18 Interested[Who] := false;
19 while Turn = Other do { busy wait for our turn }
20 null;
21 end;
22 end loop;
23 end BeginRegion;
24
25 procedure EndRegion(Who : Activity);
26 begin
27 if Who = A then Turn := B else Turn := A end;
28 Interested[Who] := false;
29 end EndRegion;

Mechanisms 265

The Interested variables ensure that simultaneous execution does not occur: Each
activity indicates that it is interested (line 13) both before it enters its region and during
the entire time it is in the region. An activity enters the region only if the other activity is
not interested. The Turn variable ensures that mutual blocking does not occur. It does
not change value during BeginRegion, and it is used only to determine which activity
backs off (lines 17−21) if both wish to enter their region. Only activityA ever modifies
Interested[A], and, likewise, onlyB modifies Interested[B], so there is no conflict for
those variables. Only the activity currently in a region modifies Turn (line 27), so there is
no conflict for that variable either.

A significant amount of effort has been directed to deriving the non-alternating
switch. There are many ways in which the switch can be built incorrectly. For many
years the program just shown, developed by Dekker, was the only good solution. A
surprisingly simple solution was published by Peterson in 1981:

1 type Activity = (A,B);
2
3 var
4 Turn : Activity := A;
5 Interested : array [Activity] of Boolean := false;
6
7 procedure BeginRegion(Who : Activity);
8 var Other : Activity; { the other activity besides Who }
9 begin
10 if Who = A then Other := B else Other := A end;
11 Interested[Who] := true;
12 Turn := Other;
13 while Interested[Other] and Turn = Other do
14 null;
15 end;
16 end BeginRegion;
17
18 procedure EndRegion(Who : Activity);
19 begin
20 Interested[Who] := false;
21 end EndRegion;

We leave the proof of this implementation as an exercise.
The non-alternating switch has the following properties:

� It is correct in the same way that the ordinary switch is correct.
� It is more liberal than the ordinary switch because it allows a faster activity to enter

its region many times before the other activity has entered. However, it is still fair
because priority is given to the activity that has not entered its region for the long-
est time.

� It is impossible for an activity to starve while waiting to enter its region, if we
assume that whenever the conflicting activity enters its region, it eventually leaves
that region.

� The solution can be generalized to any number of activities that conflict over the
same shared variables. The generalization is called aspin switch.

� The solution is complex and somewhat unclear, so it is easy to make a mistake
when programming it.

� The non-alternating switch uses busy waiting if a conflicting activity is in its
region.

266 Concurrency Chapter 8

2.5 Locks

The switch solutions we have seen are store-synchronous; they assume that individual
references to mainstore are atomic. Many computers offer an explicit store-synchronous
instruction that makes mutual exclusion far easier and clearer. This instruction atomi-
cally reads a variable and sets it to a new value. The most common design is to set the
new value to 1 no matter what the old value. In this case, the instruction is called Test
and Set. It has the following behavior:

1 atomic function TestAndSet(var Lock : Boolean) : Boolean;
2 begin
3 TestAndSet := Lock;
4 Lock := true;
5 end TestAndSet;

One of the exercises explores a different atomic action that increments the old value.
Given Test and Set, we can build a simple mutual-exclusion mechanism called a

lock:
1 type Lock = Boolean;
2
3 procedure BeginRegion(var L : Lock);
4 begin
5 while TestAndSet(L) do
6 null;
7 end;
8 end BeginRegion;
9
10 procedure EndRegion(var L : Lock);
11 begin
12 L := false;
13 end;

Each region that an activity might enter uses a number of shared variables that must be
protected. Each such group of shared variables is assigned a lock variable. Before enter-
ing a region, an activity is expected to call BeginRegion on the appropriate lock. If
several locks are needed, they should be acquired in a standard hierarchical order to
prevent deadlock. It makes no difference in what order they are released at the end of the
region.

This solution works because the TestAndSet instruction (line 5) will return true as
long as some other activity is in a conflicting region. When it returns false, it simultane-
ously sets the lock to true so that any other activity trying to acquire the lock will fail. If
several activities are trying to get the same lock and the activity with the lock releases it
(line 12), only one of the contenders will get it because TestAndSet is atomic. (Which
one of the contenders gets it is arbitrary and depends on hardware arbitration.)

The lock method has the following properties:

� It works for any number of activities on any number of processors sharing main
store.

� It is simple and easy to verify.

Mechanisms 267

� It is liberal in that an activity that holds a lock does not prevent another activity
from acquiring a different lock.

� It allows starvation because the choice of which activity to honor is arbitrary, on
the assumption that the hardware is unintelligent.

� It uses busy waiting.

2.6 Semaphores

Each of the previous solutions employs busy waiting. The following methods all share a
new property that distinguishes them from the busy-waiting methods: They depend on
the ability to schedule activities. An activity that attempts to enter a region that is already
occupied can be blocked, just as a process that attempts to gain a resource that is
currently allocated might be blocked by the resource manager. While it waits, other
activities may continue. Instead of consuming computational resources in a fruitless
loop, the waiting activity only needs to suffer the cost of a context switch or two. To
achieve this effect, we need to embed the BeginRegion and EndRegion operations in the
scheduler instead of building them directly on the hardware. The scheduler can also
maintain a list of activities waiting to enter a region so that a fair choice can be made
when conditions allow.

Our first example of this approach is to protect each group of shared variables with
a semaphore, which has the following structure:

1 type
2 Queue = list of Activity
3 Semaphore =
4 record
5 { all fields are initialized as shown }
6 MutEx : Lock := false;
7 Value : integer := 1;
8 Waiters : Queue := empty;
9 end;

The scheduler provides two operations on semaphores. We will call the first Up (some-
times people call this operation P, Wait, or Acquire). The second operation is Down
(also called V, Signal, or Release). Informally, Down blocks the caller if Value (line 7) is
0. Otherwise, it decrements Value. Up increments Value and unblocks at most one wait-
ing activity.

The correct use of semaphores to implement mutual exclusion is simple: All
regions that use the same shared variables are associated with the same semaphore. An
activity that wishes to enter a region calls Down on the associated semaphore (instead of
BeginRegion). When the activity exits the region, it calls Up on the same semaphore
(instead of EndRegion). The first activity to try to enter its region succeeds, because
Value is initially 1. Another activity that tries to enter while the first is still in its region
will be blocked. When the first activity leaves the region, the second activity is
unblocked. The Value field is always either 0 or 1.

To give a more formal definition of Down and Up, we will implement them using
locks as a more primitive mutual-exclusion tool.

268 Concurrency Chapter 8

1 procedure Down(var S : Semaphore);
2 begin
3 BeginRegion(S.MutEx); { use TestAndSet }
4 if S.Value = 0 then
5 Block(S.Waiters); { proceed when unblocked later }
6 else
7 S.Value := S.Value − 1;
8 end;
9 EndRegion(S.MutEx);
10 end Down;
11
12 procedure Up(var S : Semaphore);
13 begin
14 BeginRegion(S.MutEx);
15 if not Empty(S.Waiters) then
16 UnBlock(S.Waiters) { Unblock one waiter. We continue. }
17 else
18 S.Value := S.Value + 1;
19 end;
20 EndRegion(S.MutEx);
21 end Up;

It is important that Down and Up be mutually exclusive. In particular, any access
of the Value or the Waiters field must be atomic. That is why we use the MutEx field of
each semaphore to make sure that Down and Up exclude each other. We must make sure
that both Down and Up retain exclusion for only a short time; otherwise our attempt to
avoid busy waiting has failed.

In the simple case, Down does not find S.Value equal to 0 in line 4 and need not
block in line 5. If it does block, we require that the Block routine (in the scheduler)
resume some other runnable activity and that Block turn off exclusion before resumption.
Block accomplishes this by calling EndRegion(S.MutEx). Block therefore needs to
know which semaphore is in use; we omit this argument for clarity. UnBlock, called by
Up in line 16, marks one waiting activity as runnable (for example, by placing it in a
ready list). The releasing activity then continues and soon releases exclusion at line 20.
When the newly runnable activity is scheduled to run, it is again given exclusion, and it
finds itself running at line 5 in the Down routine. It will soon release exclusion itself in
line 9.

There is some controversy over whether the scheduler should switch immediately
to the waiting activity that is activated in line 16. Immediate switch guarantees that
whatever condition is being awaited by that activity still holds, since the Up operation
has just been called and no other activity has had a chance to run. The disadvantage of
an immediate switch is that it tends to increase the total number of switches. The activity
that called Up is likely to call Down for a new region soon, causing it to block in any
case. The Hysteresis Principle suggests that the current process should be allowed to
continue.

Semaphores are so useful that some operating systems provide service calls so that
processes that share resources (particularly parts of virtual store) can synchronize their
accesses. Four service calls are needed:

� SemaphoreCreate(initial value). This call returns a new semaphore descriptor
(a small integer) that the calling process may use. The semaphore structure itself is
protected in the kernel and has its Value field set to the given initial value. This
semaphore may be inherited by the children of the calling process so they can all

Mechanisms 269

share the same semaphore.
� SemaphoreDestroy(semaphore descriptor). This call informs the kernel that

the given semaphore is no longer needed. This call is implicitly performed when
the last process using a semaphore terminates. Any process waiting on a Sema-
phoreDown call receives an error return from that call.

� SemaphoreDown(semaphore descriptor). This call performs the Down opera-
tion on the given semaphore. An error is reported if the semaphore is not associ-
ated with this process or if the semaphore is destroyed while the process is blocked
waiting for it.

� SemaphoreUp(semaphore descriptor). This call performs the Up operation on
the given semaphore. An error is reported if the semaphore is not associated with
this process.

Semaphores have the following properties:

� They correctly implement a liberal policy of mutual exclusion among any number
of activities on any number of processors. Activities interfere with each other only
if they refer to the same semaphore.

� When an activity is blocked from entering its region, it does not busy wait.
� Starvation is possible unless waiters are unblocked in first-come, first-served order.
� As with all the methods we have seen so far, there is no guarantee that activities

will call Down and Up at the correct times. The wrong (or no) call may be made,
or the wrong semaphore may be invoked.

� A semaphore used for mutual exclusion is a serially reusable, non-preemptable
resource. Its use is therefore subject to deadlock. A hierarchical order for acquir-
ing multiple semaphores can be used to prevent deadlock.

It is easy to generalize the semaphore to allow any fixed number of activities the right to
enter their region at the same time. For example, we might have seven tape drives and be
willing to allow up to seven activities to access tape-drive code. To enforce this policy,
we would build a semaphore for tape-drive code and initialize its value to 7 instead of 1.

Semaphores allow us to implement synchronization without busy waiting. For
example, we could introduce a semaphore for each arrow in the synchronization graph of
Figure 8.1: AB, BE, and so on. Each semaphore would be initialized to 0. A typical
activity, like E, would have this sort of code:

1 activity E:
2 Down(BE);
3 Down(DE);
4 perform E’s work;
5 Up(EF);
6 Up(EH);

We don’t really need so many semaphores. Instead, we could introduce just one sema-
phore per activity. Again, it would be initialized to 0. When the activity finishes, it
invokes Up on the semaphore as many times as there are activities waiting for this one to
finish. Before an activity starts, it invokes Down on the semaphores of all the activities it
needs to wait for. For example,E looks like this:

270 Concurrency Chapter 8

1 activity E:
2 Down(B);
3 Down(D);
4 perform E’s work;
5 Up(E); { once for F, once for H }
6 Up(E);

One of the exercises at the end of the chapter explores another way to use semaphores to
solve the same problem.

2.7 Critical regions

Semaphores provide the power we need, but they are easy to misuse. The following sec-
tions deal with ways to embed semaphores in programming-language constructs that try
to minimize three problems:
(1) Failure to protect shared variables
(2) Failure to invoke semaphore operations in the right order and at the right time
(3) Deadlock and starvation

We begin by a programming-language construct called thecritical region. It is meant to
be part of any language that explicitly allows several activities to share variables. Vari-
ables that are shared must be so declared; they are the only global variables that activities
are allowed to access. Access to shared variables is restricted to code that lies within the
region statement, as shown here:

1 var
2 v : shared integer;
3
4 . . .
5
6 region v do
7 v := 15;
8 write(v);
9 end;

We no longer use explicit calls to procedures BeginRegion and EndRegion; the compiler
inserts those calls (most likely, calls to semaphores) for us.

There is a danger of deadlock because activityA might nest (that is, embed)
region v inside region w, whereas activityB might nest them in the other order.
Sometimes the compiler can check the order of nesting and disallow conflicting orders.
However, if a region includes a call to a procedure that then enters another region, a nest-
ing situation arises that the compiler cannot be expected to detect. Still, an impermissible
order can be discovered when the program runs. Another way to skirt the problem is to
avoid nesting. If a single region needs to use several shared variables, they may be listed
in the region statement. In this case, the compiler may choose any order it wishes to
acquire the semaphores. A consistent order is equivalent to a hierarchical allocation rule.

If several activities are waiting for the same shared variable, we can protect against
starvation by making sure the underlying semaphores keep all waiting activities in a
first-in, first-out queue.

Regions protect the programmer against two mistakes that are common with sema-
phores. First, there is no way to access a shared variable from outside a region.

Mechanisms 271

Variables are visible to more than one activity only if they are declaredshared. Shared
variables are invisible except within critical regions. Entry to critical regions automati-
cally excludes conflicting activities. Second, there is no way to forget to call Up at the
end of a region. Up is no longer explicitly invoked.

But several problems remain. The first is that synchronization requires busy wait-
ing if critical regions are the only facility. The second is that accesses to shared variables
may be scattered throughout the program, with the result that it is difficult to coordinate
all the places that modify them. In addition, there is no way for several activities to read
the same shared variables simultaneously even though simultaneous reads need not be
mutually exclusive. We will address these objections in the next few sections.

2.8 Conditional critical regions

A slight modification to critical regions will allow us to solve the synchronization prob-
lem without busy wait. As we saw before, synchronization in general is the desire to
block an action until a particular condition becomes true. For example, the ‘‘pop’’
operation makes sense only for a stack that is not empty. The action of popping the stack
should be delayed until that condition holds. Likewise, actionB of Figure 8.1 should
continue only ifA has terminated.

To meet these needs, we add anawait statement that may only be used inside a
critical region. Await names an arbitrary Boolean condition. If the condition is not met,
the activity executing theawait statement is blocked until it is met. For example, pop-
ping from a stack could be done as follows:

1 type
2 stack =
3 record
4 Count : integer; { How many elements in stack }
5 Values : array 1:10 of element;
6 end;
7 var
8 Trays : shared stack;
9
10 ...
11
12 region Trays do
13 await Trays.Count > 0;
14 Result := Trays.Values[Trays.Count];
15 Trays.Count := Trays.Count - 1;
16 end;

To solve the synchronization problem of Figure 8.1, we can have a Boolean variable
indicate when each activity finishes and test that variable in anawait statement.

We must decide exactly what theawait statement means. Does it relax exclusion
if it blocks? If not, how can another activity ever modify the condition that is being
awaited? If so, how can we be sure that no other activity has confused the data structures
while we were blocked? One consistent approach is to demand thatawait statements
appear only at the start of critical regions and that exclusion not start until the condition is
met. (Of course, checking the condition must be atomic, a condition that can be achieved
through hidden semaphores.) Another approach is to allowawait statements anywhere

272 Concurrency Chapter 8

in the critical region. Anyawait that blocks releases exclusion, so it is up to the pro-
grammer to make sure that data structures are consistent before encounteringawait. In
this way other activities will not be confused when they enter their conflicting region, and
the blocked activity will not be confused when it resumes.

We must also decide exactly when the conditions are to be tested. If each activity
is on a separate processor, we may test conditions continually. However, since such busy
waiting is unacceptable for most implementations, we need to limit the times when the
condition may be tested. Certainly there is no need to test the condition as long as some
other activity is in a conflicting region, because that other activity must maintain exclu-
sion until it leaves its region, even though it may have made the condition true by its
actions. In practice, there may be no need to test conditions when all activities are out-
side conflicting regions because useful conditions involve shared variables, and shared
variables are changed only by activities within critical regions. One time we need to
check conditions is when an activity leaves a critical region; the only conditions that must
be tested are those in conflicting regions. The other time is when an activity in a
conflicting region entersawait. (This situation only arises ifawait is permitted in the
middle of regions.) Checking a condition can still be very expensive because it may
require switching to the environment of the blocked activity in order to access local vari-
ables involved in the condition. For efficiency, such complex conditions may be disal-
lowed.

To show how conditional critical regions can be used to implement our synchroni-
zation graph, we present the code for activityE:

1 var
2 ADone, BDone, CDone, DDone, EDone, FDone, GDone :
3 shared Boolean := false;
4
5 activity E:
6 region BDone do await BDone end;
7 region DDone do await DDone end;
8 perform E’s work;
9 region EDone do EDone := true; end;

Conditional critical regions are very easy to use for complex mutual-exclusion and syn-
chronization problems. The exercises at the end of this chapter suggest some problems to
try; they are based on ideas we will introduce soon.

2.9 Monitors

One objection to using conditional critical regions is the cost involved in checking condi-
tions. A second objection is that code that modifies shared data may be scattered
throughout a program. The language construct called amonitor was invented to address
both these issues. It acts both as a data-abstraction device and a mutual-exclusion device.
Synchronization is provided by a new data type called acondition.

A data-abstraction device is a programming construct that separates operations
on data from their implementation details, thus providing new function while hiding
unnecessary structure. (We have seen abstraction as a form of the Beautification Princi-
ple.) In languages that provide such devices, they usually have the form of a new name

Mechanisms 273

scope (a block, in the Algol sense) that may export types and procedures to the outside
world but uses local variables to store state and perform necessary computations. Moni-
tors have this structure, too, although they are principally used as a mechanism for
shared data abstractions. They export procedures, which we will callguard procedures,
that may be called from outside the monitor. No matter how many activities are running,
only one is allowed to execute a guard procedure at a time.

The most straightforward use of monitors is to package all routines that use a set of
shared data into a single monitor. All accesses to those data will be forced to use guard
procedures because the data themselves are hidden from the outside world. For example,
if we wish to implement a counter that records the number of times some interesting
event has happened, and different activities will wish to modify and inspect the counter,
we could build the following monitor. The syntax chosen here is meant to convey the
ideas without introducing extraneous concepts; therefore, it differs from Modula, which
also provides monitors with a different syntax.

1 monitor Counter;
2
3 export RaiseCount, ReadCount;
4
5 var
6 Count : integer;
7
8 guard procedure RaiseCount;
9 begin
10 Count := Count + 1;
11 end RaiseCount;
12
13 guard procedure ReadCount : integer;
14 begin
15 ReadCount := Count;
16 end ReadCount;
17
18 begin { initialize }
19 Count := 0;
20 end Counter.

One way to picture the monitor is shown in Figure 8.2, which shows the monitor as a
floor plan of a building. When activities wish to invoke guard procedures, they must

entry

procedures

guard

queue 12

Figure 8.2 A simple monitor

274 Concurrency Chapter 8

enter through the entry queue, where they are blocked until the guard procedures are free
of any activity. Entrance 2 is unlocked only if there is no activity in the main room.
Door 1 is always unlocked; when it is opened to let an activity out, door 2 is unlocked.

It is not hard to implement this kind of monitor using only semaphores. A com-
piler could translate guard procedures into the following code:

Down(MonitorEmpty);
guard procedure body

Up(MonitorEmpty);

The fact that the programmer does not need to remember the final Up operation makes
monitors easier and safer to use than bare semaphores. The fact that all the code that can
affect the shared variables is packaged in one place also makes it easier to check that the
variables are properly used.

It is not hard to find situations in which the simple monitors we have shown so far
are insufficient. As it stands, they have no facility for synchronization. Theproducers-
consumers problem is a good example of a situation where both mutual exclusion and
synchronization are needed.

Producers-consumers problem

Any number of producer activities and consumer activities are running. At any
time, a producer activity may create some data. At any time, a consumer ac-
tivity may want to accept some data. The data should be saved in a buffer until
they are needed. Since the buffer is finite, we want a producer to block if its
new creation would overflow the buffer. We also want a consumer to block if
there are no data available when it wants them. Data should be accepted in the
order in which they are produced, although we relax this rule somewhat for
data produced or consumed simultaneously.

We can use a monitor to implement abounded buffer shared among all producers and
consumers. The data-abstraction features of the monitor will collect the BufferPut and
BufferGet operations in one place, so the program is easy to debug and maintain. The
mutual-exclusion properties of the monitor will ensure that two producers don’t attempt
to modify the buffer at the same time and, more generally, that simultaneous conflicting
uses are prevented. Synchronization features will be used to block producers and consu-
mers when the buffer is full or empty.

Here is a monitor implementation of bounded buffers:
1 monitor BoundedBuffer;
2
3 export GetBuffer, PutBuffer;
4
5 const
6 Size = 10; { number of elements in the buffer at one time }
7 type
8 Datum = ... { the data type of the contents of the buffer }
9 var
10 Buffer : array 0:Size-1 of Datum;
11 Count : 0..Size; { how many elements currently in the buffer }
12 NextIn, NextOut : 0..Size-1;
13 { index of next datum to place in the buffer or remove }
14 NonEmpty, NonFull : condition;
15

Mechanisms 275

16 guard procedure PutBuffer(What : Datum);
17 begin
18 if Count = Size then
19 wait NonFull;
20 end;
21 Buffer[NextIn] := What;
22 NextIn := (NextIn + 1) mod Size;
23 inc(Count);
24 signal NonEmpty;
25 end PutBuffer;
26
27 guard procedure GetBuffer(var Result : Datum);
28 begin
29 if Count = 0 then
30 wait NonEmpty;
31 end;
32 Result := Buffer[NextOut];
33 NextOut := (NextOut + 1) mod Size;
34 dec(Count);
35 signal NonFull;
36 end GetBuffer;
37
38 begin { initialization }
39 Count := 0;
40 NextIn := 0;
41 NextOut := 0;
42 end Buffer

This representation of bounded buffers satisfies our goals nicely. We need not
worry that some other piece of program modifies the shared variables Buffer and Count
because they are visible only within this monitor. There is no danger that several activi-
ties will try to modify Count simultaneously, will produce into the same cell of Buffer
simultaneously, or will take data from the same cell of Buffer simultaneously, because all
such behavior is restricted to guard procedures, which are mutually exclusive.

Finally, we have provided a way for activities to be blocked if necessary. The
mechanism is the new (predefined) type calledcondition. Both NonEmpty and NonFull
are declared as conditions in line 14. Let us concentrate on the condition NonEmpty. At
line 30, a consumer that finds the buffer empty executes await on this condition. The
wait will block this activity until some other activity signals the condition. At that time,
the blocked activity may continue. When it gets to line 32, it assumes that the buffer is
no longer empty. Any producer that succeeds in placing new data in the buffer executes
a signal on the NonEmpty condition at line 24. This operation unblocks a waiting consu-
mer.

The foregoing discussion raises some troubling questions. Exactly when does the
blocked consumer continue? If immediately, then we may have two activities in the
monitor at once, and our careful mutual exclusion is ruined. If later, then by the time it
continues, some other consumer may already have taken the last datum, and the assump-
tion on line 32 that the buffer is not empty is wrong. If several consumers are waiting at
the same time, which one or ones are unblocked by a signal? If a producer executes a
signal when no consumers are waiting, is this signal stored or discarded?

Not all definitions of monitors in the literature agree on the answers to these ques-
tions. We will first present a common approach and then discuss alternatives. Figure 8.3
expands the preceding figure to show the effect of conditions. For every condition we
build a condition queue (shown on the bottom of the monitor). We also introduce one

276 Concurrency Chapter 8

urgent queue

2 1

8765

condition queues

43

queue

guard

procedures

entry

Figure 8.3 Monitors with conditions

urgent queue (shown at the top of the monitor). As before, we insist that at most one
activity inhabit the guard procedures (the center of the monitor) at any time. Activities
that are blocked will be placed in these queues. Here are the rules that govern the doors
in and out of the queues and the central region:

(1) New activities wait in the entry queue. A new activity may enter through door 2
if no activity is currently in the central region.

(2) If an activity leaves the central region through door 1 (the exit), one activity is
allowed in through door 4 (from the urgent queue) if there is one waiting there.
If not, one activity is allowed through door 2 (from the entry queue) if there is
one waiting there.

(3) An activity that executes await enters the door to the appropriate condition
queue (for example, 5 or 7).

(4) When an activity executessignal, the signaled condition queue is inspected. If
some activity is waiting in that queue, the signaler enters the urgent queue (door
3) and one waiter is allowed into the central region (door 6 or 8). If no activity is
waiting in that queue, the signaler proceeds without leaving the central region.
The signal is ignored.

(5) All queues are ordered first in, first out.

Mechanisms 277

These rules assure that a waiting consumer is unblocked immediately when a producer
signals NonEmpty and that the producer is blocked in the urgent queue until the consu-
mer has taken the datum. We have maintained our rule that at most one activity inhabits
the central region.

People who use monitors have noticed that the signal operation is almost always
the last operation performed in a guard procedure. We see this behavior in our
producer-consumer solution (lines24 and 35). Our rules will often make the signaler
wait in the urgent queue and then return to the central region just to get out of the monitor
altogether. This scenario violates the Hysteresis Principle. Furthermore, if the signaler
does have more work to do, it can’t assume that the situation of shared variables is the
same when it returns from the urgent queue because the activity that was unblocked is
likely to change them. For these reasons, some people require that signal must be the last
operation of a guard procedure and must cause the signaling activity to leave the monitor.
Then we don’t need an urgent queue, and signalers never make invalid assumptions
about shared data. However, this restriction makes monitors less flexible. (Such moni-
tors are strictly less powerful in a theoretical sense.)

A related suggestion is thatbroadcast should be likesignal but should releaseall
the members of the associated condition queue. Since they can’t all be allowed into the
central region at once, most are placed in the urgent queue. In this way, when conditions
are right, all the waiters may be released instead of the awkward alternative of having
each released waiter releasing the next one in turn. However, a released activity can no
longer assume that the condition it has awaited is truly met by the time it resumes. Pro-
grams written withbroadcast usually replace theif statement in lines 29 through 31
above with awhile loop:

29 while Count = 0 do
30 wait NonEmpty;
31 end;

Proper use of monitors follows the guideline that no activity should take too long
in the central region. It shouldn’t take too long for an activity that is waiting in the entry
queue to get into the monitor and access the shared variables. Any lengthy operation
should relax exclusion by entering a condition queue or by doing its work outside the
monitor. A fascinating violation of this guideline arises if the activity in a guard pro-
cedure makes a call on a guard procedure in another monitor. Under our rules, this
activity is still considered to be in the first monitor, preventing any other activity from
entering. However, it may take a long time before it returns because it may be forced to
wait in the second monitor in a condition queue. (By our guideline, it shouldn’t have to
wait very long in either the entry queue or the urgent queue.) This delay in returning
violates our guideline with respect to the first monitor. It can even lead to deadlock if the
condition it awaits in the second monitor can be signaled only by an activity that is
currently waiting patiently to enter the first monitor.

A number of solutions to this problem have been proposed.

(1) Warn the programmer but allow the bad situation to develop. That is, nested
monitor calls maintain exclusion on the old monitor while in the new one.

(2) Disallow nested monitor calls.
(3) Release exclusion on the old monitor and enforce it only on the new one. When

the activity is ready to return, it must wait in the urgent queue of the first monitor
until it can once again achieve exclusive use of the central region.

278 Concurrency Chapter 8

(4) Let the programmer decide whether the nested call should maintain exclusion in
the old monitor or not. By default, method 1 is used. The programmer can say
duckout to release exclusion while still in the monitor andduckin to acquire
exclusion again. These calls can bracket a nested call to simulate method 3.

Although monitors represent a significant advance over the earlier devices we have
studied, they do have some significant problems. Monitors have been criticized for not
providing any control over how the queues are ordered. The policy to treat them in first-
in, first-out order is not always appropriate. For example, several activities simultane-
ously in the urgent queue are like nested interrupts, which are usually released in first-in,
last-out (stack) order. As another example, different waiters in a condition queue may
have different priorities, which could be taken into account in selecting an order. Some
people prefer a more general mechanism for inspecting and reordering the various
queues.

Monitors also display unexpected complexity with respect to nested calls. It is not
easy to describe the semantics ofwait andsignal without resorting to pictures like Figure
8.3. Complexity is also introduced by the artificial use of condition variables. The pro-
grammer is more likely to understand the underlying condition (like ‘‘Count > 0’’) than
to represent that condition properly by judicious use ofwait andsignal.

Another objection to monitors comes from their data-abstraction ability. If we
have several bounded buffers to implement, we would be tempted to build only one mon-
itor and to have the PutBuffer and GetBuffer procedures take a parameter that describes
which buffer is to be manipulated. This solution has two drawbacks. One is that the
buffer has an existence outside the monitor and so might be inadvertently modified by a
non-monitor procedure. Luckily, modern programming languages have the idea of
‘‘exported types’’ that exist outside a data-abstraction module but can be manipulated
only from within that module. The other drawback is that using only one monitor is too
conservative: Every manipulation of one buffer now excludes operations on all other
buffers because mutual exclusion is governed by which monitor is to be entered, not by
which data structure is being accessed. Again, modern programming languages come to
the rescue. One can imagine a ‘‘monitor type’’ for bounded buffers. A new monitor of
that type is built for each buffer needed. The program for monitors needs to be written
only once, but each buffer gets its own monitor with its own exclusion.

A serious objection to monitors is related to our guideline that exclusion should not
be in force for very long. However, shared data might be needed for a very long time.
This is exactly the situation in thereaders-writers problem,mentioned in our chapter on
file structures.

Readers-writers problem

Any number of reader activities and writer activities are running. They share
some data (for example, a file). At any time, a reader activity may wish to read
data from the file. At any time, a writer activity may want to read or modify
the data in the file. Reading and writing are time-consuming operations, but
they always finish eventually. During the time a writer is writing, no other
reader or writer may access the shared data. Any number of readers may ac-
cess the data simultaneously. For fairness, we prefer that no reader or writer be
starved (that is, forced to wait indefinitely).

If we make Read and Write guard procedures, two readers cannot execute at the same

Mechanisms 279

time, a restriction that violates the spirit of the problem. Therefore, Read must not be a
guard procedure but rather a procedure external to the monitor. Proper use of Read
would call the guard procedures StartRead and EndRead around calls to Read, but there
is no assurance that a reader will follow these rules. Monitors therefore fail to protect the
shared data adequately.

2.10 Crowd monitors

One nice extension to monitors to avoid this last problem is calledcrowd monitors.
Crowd monitors distinguish guard procedures from ordinary procedures within the moni-
tor. Only guard procedures are mutually exclusive. Ordinary procedures may be
invoked only by activities that have permission to do so; this permission is granted and
revoked by guard procedures. A skeleton of the crowd-monitor solution to the readers-
writers problem is as follows:

1 crowd monitor ReadWrite;
2
3 export StartRead, EndRead, Read, StartWrite, EndWrite,
4 Write;
5 var
6 Readers : crowd Read;
7 Writers : crowd Read, Write;
8
9 guard procedure StartRead;
10 begin
11 ... { block the caller until reading is safe }
12 enter Readers;
13 ...
14 end StartRead;
15
16 guard procedure EndRead;
17 begin
18 leave Readers;
19 ... { bookkeeping, maybe signal a waiting writer }
20 end EndRead;
21
22 guard procedure StartWrite;
23 begin
24 ... { block the caller until writing is safe }
25 enter Writers;
26 ...
27 end StartWrite;
28
29 guard procedure EndWrite;
30 begin
31 leave Writers;
32 ... { bookkeeping, maybe signal waiter }
33 end EndWrite;
34

280 Concurrency Chapter 8

35 procedure Read;
36 begin
37 ... { actually read from the shared data }
38 end Read;
39
40 procedure Write;
41 begin
42 ... { actually modify the shared data }
43 end Write;
44
45 end ReadWrite

In lines 6 and 7, we declare twocrowds called Readers and Writers. Activities can be
members of these crowds. Any member of Readers may access the Read procedure
(lines 35−38), and any member of Writers may access both the Read and the Write pro-
cedure (lines 40−43). Activities initially belong to no crowds. The guard procedures,
which are mutually exclusive as before, decide when it is appropriate for an activity to
enter or leave a crowd. They may use conditions to wait for the right situation. When
the guard procedure decides to let a reader proceed, it executesenter for the Readers
crowd (line 12). Similarly, a guard can let a writer enter the Writers crowd (line 25).
Although any activity may call Read and Write, since they are exported from the moni-
tor, a run-time check prevents activities from calling ordinary procedures that are invisi-
ble to the crowds they are in. A member only of Readers may not call Write. However,
a member of Writers may call either Read or Write, since both are specified in the
definition of Writers (line 7).

It is easy to implement crowd monitors once regular monitors have been imple-
mented. A run-time check is applied every time an activity calls a procedure like Read
and Write in order to make sure that the activity is in the necessary crowd. If not, a pro-
gram error has been discovered. No new blocking or unblocking rules are needed.

2.11 Event counts and sequencers

So far we have investigated methods that serve for both mutual exclusion and synchroni-
zation. We now turn to a technique to achieve synchronization without requiring mutual
exclusion. Mutual exclusion is not always desirable because it limits concurrency. It is
also difficult to enforce, as we have seen, and is not always needed on physically distri-
buted computers. In fact, if one hasn’t yet implemented mutual exclusion, the method we
are about to discuss can be used to build semaphores to provide mutual exclusion, too.
The semaphores we can build will even allow simultaneous Down operations on several
semaphores.

The first tool we will introduce is theevent count. An event count is represented
as a non-decreasing integer variable, initially 0. It keeps a count of the number of events
of interest to the program, such as the number of times a variable has been modified. As
an abstract data type, event counts have three operations: Advance, Read, and Await.

� Advance(E) is used to signalthe occurrence ofevents associated with event count
E. It has the effect of incrementing E atomically.

Mechanisms 281

� Read(E) returns the value of the event count E. If Read returns some numbern,
then at leastn Advance operations must have happened. By the time this number
is returned, the event count may have been advanced again a number of times.

� Await(E reaches v) waits for the event count E to have the valuev. It blocks the
calling activity until at leastv Advance operations have occurred. It is acceptable
if more thanv Advance operations have occurred when it is finally unblocked.
This ‘‘overshoot’’ could result from very frequent Advance operations. (We adopt
the syntax shown here for clarity. Await could be a procedure with two parame-
ters, using a comma instead ofreaches.)

These definitions allow both Await and Read to be concurrent with Advance, since we
don’t care if Read gives us a somewhat stale value or if Await waits a trifle too long.

We introduced the producers-consumers problem earlier to show how monitors
handle synchronization. Here is a solution using event counts. For the time being, we
assume that there is only one producer and one consumer.

1 const
2 Size = 10; { number of elements in the buffer. }
3 type
4 Datum = ... { data type for buffer contents. }
5 var
6 In, Out : eventcount;
7 Buffer : array 0:Size-1 of Datum;
8
9 activity Producer;
10 var
11 SequenceNumber : integer;
12 Value : Datum;
13 begin
14 for SequenceNumber := 1 to infinity do
15 ... { compute Value }
16 Await(Out reaches SequenceNumber − Size);
17 Buffer[SequenceNumber mod Size] := Value;
18 Advance(In)
19 end
20 end Producer;
21
22 activity Consumer;
23 var
24 SequenceNumber : integer;
25 Value : Datum;
26 begin
27 for SequenceNumber := 1 to infinity do
28 Await(In reaches SequenceNumber);
29 Value := Buffer[SequenceNumber mod Size];
30 Advance(Out)
31 ... { use the Value }
32 end
33 end Consumer;

There is no need for us to worry that the consumer and producer will simultaneously
access the same cell in Buffer, since the producer will have to wait until the consumer
has used that cell before its Await in line 16 will allow it to proceed. Similarly, the con-
sumer knows that when it accesses a cell of Buffer, the producer must have placed data
there, or the Await in line 28 would not have unblocked. In addition, we need not worry
that both Advance operations (lines 18 and 30) will happen at the same time, because

282 Concurrency Chapter 8

they deal with different event counts. This solution allows the bounded buffer to be used
simultaneously by both activities because it guarantees that the very same datum will
never be touched by both at once.

The other tool we will use is thesequencer, which assigns an arbitrary order to
unordered events. We will use this order to decide which activity gets a resource first. A
sequencer is implemented as a non-decreasing integer variable, initialized to 0. It has
only one operation: Ticket.

� Ticket(S) returns the current value of the sequencer S (initially 0) and then incre-
ments S. This operation is atomic. We need some form of mutual exclusion to
implement Ticket because no two calls may return the same value.

Now we can implementa producer-consumer situation inwhich there are many
producers. For simplicity, we will still have only one consumer. As before, consumption
and production need not exclude each other. However, two producers must take turns to
make sure that they don’t write into the same cell in the Buffer. Here is the new pro-
ducer program.

1 ...
2 var
3 Turn : sequencer;
4
5 activity Producer;
6 var
7 SequenceNumber : integer;
8 Value : Datum;
9 begin
10 loop
11 ... { compute Value }
12 SequenceNumber := Ticket(Turn); { discover turn }
13 Await(In reaches SequenceNumber); { wait for turn }
14 Await(Out reaches SequenceNumber − Size + 1);
15 { wait for Buffer }
16 Buffer[SequenceNumber mod Size] := Value;
17 Advance(In);
18 end;
19 end Producer;

Each producer must wait until it is its turn to produce. The call to Ticket in line 12 orders
active producers. Usually there will be no wait in line 13, unless another producer has
just grabbed an earlier ticket and has not yet gotten to line 17. The Await in line 14 is to
make sure that the cell in Buffer that is about to be overwritten has been consumed. It
differs from line 16 of the previous example by 1, since here SequenceNumber starts at
0, not 1. The Advance in line 17 tells waiting consumers that this cell in Buffer may be
consumed, and it tells waiting producers that we have finished our turn.

The call to Await in line 13 might seem unnecessary. It’s there to make sure that
producers write cells of Buffer in order, so that consumers may assume that when In is
advanced in line 17, the next cell of Buffer has new data. Unfortunately, one effect of
this imposed sequential behavior on producers is that separate cells of Buffer cannot be
written simultaneously. If the data are large, producers may exclude each other for a
long time.

We promised earlier that a semaphore could be built with event counts and
sequencers. Here is an implementation:

Mechanisms 283

1 type
2 Semaphore =
3 record
4 T : sequencer;
5 E : eventcount;
6 I : integer; { initial value }
7 end;
8
9 procedure Down(var S : Semaphore);
10 begin
11 with S do
12 Await(E reaches Ticket(T)−I+1);
13 end
14 end Down;
15
16 procedure Up(S : Semaphore);
17 begin
18 Advance(S.E);
19 end Up;

The Down procedure gets a ticket (which orders all the waiters) and then waits for the
event count to be advanced as many times as the ticket indicates. There is no need for
Down and Up to exclude each other. However, we require that every waiter get a dif-
ferent ticket.

We can extend this wait procedure to wait for two semaphores at once. The
dining-philosophers problem, described in Chapter 4, can be solved by such a method.
Here is a procedure that waits for two semaphores. It uses a third semaphore, MutualEx-
clusion, for its own purposes.

1 var
2 MutualExclusion : Semaphore; { initialized at I = 1 }
3
4 procedure DoubleDown(var S1, S2 : Semaphore);
5 var
6 Ticket1, Ticket2 : integer;
7 begin
8 Down(MutualExclusion);
9 Ticket1 := Ticket(S1.T);
10 Ticket2 := Ticket(S2.T);
11 Up(MutualExclusion);
12 with S1 do
13 Await(E reaches Ticket1);
14 end;
15 with S2 do
16 Await(E reaches Ticket2);
17 end;
18 end DoubleDown;

We use the MutualExclusion semaphore in lines 8−11 to make sure that we acquire
the two tickets as an atomic action. It makes no difference in what order we wait for S1
and S2 (lines 13 and 16).

2.12 Path expressions

284 Concurrency Chapter 8

A completely different way to describe synchronization is to spell out what routines may
be called, and in what order, separately from the routines themselves. We will introduce
a syntax known aspath expressions that specifies all temporal relationships among invo-
cations of procedures that control shared data. These expressions are built out of pro-
cedure names and connectors that indicate restrictions. For our examples, we will deal
with the readers-writersproblem and use procedures such as Read, Write, and StartRead.

The simplest expression has just one procedure name:
path Read

This expression means that only one activity may call Read at a time but that when Read
is finished, another activity (or the same one again) may call it again. That is, when the
path expression is finished, it may be started again. If we want to specify that Read must
be surrounded by StartRead and EndRead, we can say

path StartRead ; Read ; EndRead

The semicolon operator indicates that after one procedure has finished, the next one may
be called. Equivalently, this operator indicates that before a particular procedure may be
called, the one before it must have finished. However, it does not require that the same
activity that calls StartRead must call Read.

To indicate that any number of activities can simultaneously perform the same pro-
cedure, we surround that procedure in brackets, as shown here:

path { Read }

This path expression says that any number of simultaneous uses of Read are permissible.
If some activities are in Read, a new one may join them. When they all finish, the path
expression is finished and may be started again.

The last operator is the‘‘either-or’’ operator,which we will write as a vertical bar,
as in the following example:

path Read | Write

This operator means ‘‘the left side or the right side may be active, but not both.’’ This
particular path expression specifies that one activity may read at a time and one may
write at a time, and reading and writing exclude each other. After either finishes, any
activity may start doing either again. We assume that activities that wish to Read or
Write are served in arrival order; no activity is caused to wait forever for an either-or
operator.

We can combine these operators to form more complex expressions. For example,
the following begins to addressthe actualreaders-writers problem:

path { Read } | Write

This expression lets any number of readers alternate with a single writer. Although this
expression represents exactly the restriction we want, it is not fair to writers. If reader
activities arrive fast enough so that there is always some activity in the ‘‘{ Read }’’ part
of the path expression, writers will never be allowed to start.

This solution also has the danger that a reader will want to perform several reads in
a row. A writer could be serviced between two reads, and inconsistent data would be
read. To avoid this problem, we will assume that each reader wants to read only once.
Similarly, we will assume that each writer wants to write only once. Otherwise, where
we say Read, we could understand that to mean ‘‘perform any number of read operations
in the same activity.’’ Likewise, we can understand Write to mean ‘‘perform any number
of read or write operations in the same activity.’’

Mechanisms 285

To represent fair synchronization rules, we need some more tools. First, we will
allow several path expressions to be in force at the same time, as long as they don’t men-
tion the same procedures. Next, we will want to introduce intermediate procedures. For
simplicity, we will use the following notation for these procedures:

let procedure = sequence of procedures

Let’s illustrate this idea witha more complexreaders-writers example.
1 path TryRead | TryWrite
2 path { StartRead; Read } | Write
3 let TryRead = StartRead
4 let TryWrite = Write
5 let DoRead = TryRead ; Read
6 let DoWrite = TryWrite

Readers call DoRead, which expands toTryRead ; Read (line 5), which in turn
becomes StartRead ; Read (line 3). Similarly, writers call DoWrite, which
becomes TryWrite (line 6), which in turn becomes Write (line 4). The StartRead pro-
cedure does not need to do any work; it is called only to allow us to synchronize the rest
of the operations. Line 2 expresses the constraints we want on simultaneous readers and
writers. Line 1 tells us that activities must wait their turn to start TryRead and TryWrite.

This set of path expressions works, in that it properly excludes readers and writers
from each other. It also enforces a policy, in that it takes readers and writers in the order
in which they appear, except that readers that arrive next to each other in line are allowed
to overlap their executions. It is not easy to be convinced, however, that this policy
comes out of these expressions.

Implementing path expressions is not difficult; they can be converted to semaphore
operations. However, we will not examine the conversion because it is complex. Luck-
ily, a compiler can be expected to perform this work, so it can be done before the pro-
gram is run, and the programmer need not deal with its intricacies.

Since path expressions have the advantage of separating the synchronization
specification from the routines themselves, the procedures that accomplish work (like
Read and Write) are uncluttered by extraneous considerations. Path expressions also
avoid specialized guard procedures whose only purpose is to effect mutual exclusion and
synchronization. However, the procedures we introduced with thelet clause serve much
the same function.

Like monitors, path expressions are not descriptive enough to describe the order in
which blocked activities should be resumed. The either-or operator unblocks activities in
the order in which they arrive, which may not be the order desired.

Let’s step back from the complex synchronization problems we have been examin-
ing and try Figure 8.1. We can certainly impose extra constraints and require that all the
activities follow a prescribed order. If we wish to implement Figure 8.1 without extra
constraints, we will have to let the same procedure appear in several path expressions.
We then get the following solution:

1 path A ; B ; C ; F ; I
2 path D ; E ; F
3 path A ; D ; G ; H ; I
4 path B ; E ; H

286 Concurrency Chapter 8

2.13 Invariant expressions

The method ofinvariant expressions is reminiscent of path expressions. We queue all
activities that try to enter each procedure. An invariant expression associated with each
queue tells when it is permissible to allow the first waiter in that queue into the crowd. If
there is no invariant expression for some procedure, activities may enter it at any time.

Invariant expressions have a very limited syntax. They may use built-in counters
that record the number of interesting events for any procedure P. There are only five
such counters:

� RequestCount(P) counts the number of requests (since the beginning of time) for
procedure P.

� StartCount(P) counts the number of times procedure P has actually been started.
� FinishCount(P) counts the number of times procedure P has been finished.
� CurrentCount(P) counts the number of current executions of P; it is equivalent to

StartCount(P)−FinishCount(P).
� WaitCount(P) counts the number of waiting executions of P; it is equivalent to

RequestCount(P)−StartCount(P).

An invariant expression has the form
expression comparison constant

Expressions are just sums and differences of counters. The comparison can be <, >,≤, ≥,
= or ≠. For example, we might write

WaitCount(P) − RequestCount(Q) > 4

We associate such an expression with a procedure as a rule that must hold before we
allow an activity to execute that procedure. (This interpretation is not the same as saying
the rule must holdwhile the activity is executing the procedure.) The following is a solu-
tion to themultiple producer-consumerproblem:

1 module BoundedBuffer;
2
3 export GetBuffer, PutBuffer;
4
5 const
6 Size = 10; { number of elements in the buffer at once }
7 type
8 Datum = ... { data type of the contents of the buffer }
9 var
10 Buffer : array 0:Size−1 of Datum;
11 NextIn, NextOut : 0..Size−1;
12 { index of next datum to insert, delete }
13 invariant PutBuffer
14 StartCount(PutBuffer) − FinishCount(GetBuffer) < Size
15 { no overproduction }
16 CurrentCount(PutBuffer) = 0 { prevent producer conflict }
17 invariant GetBuffer
18 StartCount(GetBuffer) − FinishCount(PutBuffer) < 0
19 { no overconsumption }
20 CurrentCount(GetBuffer) = 0 { prevent consumer conflict }
21

Mechanisms 287

22 procedure PutBuffer(What : Datum);
23 begin
24 Buffer[NextIn] := What;
25 NextIn := (NextIn + 1) mod Size;
26 end PutBuffer;
27
28 procedure GetBuffer(var Result : Datum);
29 begin
30 Result := Buffer[NextOut];
31 NextOut := (NextOut + 1) mod Size;
32 end GetBuffer;

We have repeated the entire module to show how simple the PutBuffer and GetBuffer
procedures have become. As with path expressions, we find that moving all the syn-
chronization out of the procedures clarifies the entire program. Our invariant expressions
are in lines 13 through 20. Line 14 restricts calls to PutBuffer by requiring that enough
calls to GetBuffer have already happened so that the buffer won’t be overfilled. Simi-
larly, line 18 restricts calls to GetBuffer by requiring that enough calls to PutBuffer have
already happened so that the buffer has some data to be removed. Lines 16 and 20 res-
trict both PutBuffer and GetBuffer to allow only one activity in either.

We can also use invariant expressions torepresent a solutionto the readers-writers
problem. We will show just the invariants and omit the rest of the module.

invariant Read
CurrentCount(Write) = 0

invariant Write
CurrentCount(Write) + CurrentCount(Read) = 0

We might make the same assumption we did for path expressions: that activities forced to
wait because of an invariant are unblocked, if possible, in arrival order. Therefore, if
several readers and writers arrive while a writer is active, all are blocked. When the
writer finishes, one reader or writer, whichever came first, is allowed to start. However,
while one activity is reading, any number of readers may start; only writers are blocked.

The solution just shown may starve writers.To give writersprecedence, we need
to prevent new readers from starting if there are any waiting writers. The following
invariant expressions serve this purpose:

invariant Read
WaitCount(Write) + CurrentCount(Write) = 0

invariant Write
CurrentCount(Write) + CurrentCount(Read) = 0

The only change is an extra clause in the invariant expression for Read.
Invariant expressions are easily used to represent the synchronization graph of Fig-

ure 8.1. For example, the invariant expression for procedureE would be as follows:
invariant E

FinishCount(B) + FinishCount(D) = 2

Invariant expressions, like path expressions and monitors, are unable to reorder
waiting queues to serve some activities out of turn. However, they are often far clearer
than path expressions and can express the same sort of synchronization constraints.

288 Concurrency Chapter 8

3 PERSPECTIVE

It is necessary to distinguish carefully between simple mutual-exclusion situations, where
it is dangerous for two activities both to proceed, and synchronization situations, where
complex conditions might govern when an activity may proceed. To show pure forms of
both situations, we considered modifying shared data (pure mutual exclusion) and Figure
8.1 (pure synchronization). Later, we turnedto the producer-consumerproblem and the
readers-writers problem asmore complex examples. These latter examples display
aspects both of mutual exclusion (we don’t want two producers simultaneously writing
into the buffer, and we don’t want two writers simultaneously active) and of synchroniza-
tion (consumers must wait until data are produced; readers should wait if there are wait-
ing writers). The situations that occur within operating systems are typically of this
hybrid variety.

The methods we have seen range from simple hardware techniques to
programming-language constructs that try to guarantee that the restrictions described are
clear, efficiently implementable, and unlikely to be misused. The more complex solu-
tions are invariably implemented by behind-the-scenes work using a simpler solution.
For example, monitors can be implemented by semaphores. Semaphores themselves
need to turn on mutual exclusion around critical parts of their implementation, and might
do that with test-and-set locks. At the bottom of this ladder always stands the inherent
atomicity of main store, which serves only one access at a time.

One might evaluate different proposals on the basis of three characteristics: modu-
larity, expressive power, and ease of use. Modularity is achieved by data abstraction and
by separating concurrency control from resource access. Monitors, crowd monitors, path
expressions, and invariant expressions all display a high degree of modularity.

Expressive power involves ability to formulate exclusion, synchronization, and
priority requirements. Each of the methods displayed is capable of formulating the first
two kinds of requirement. None does well with respect to priority because queues are
built into most of the methods without any mechanism for inspecting and reordering
those queues.

Requirements may depend on a host of criteria. A partial list follows. For each,
we show how it applies to the producers-consumers problem.

� What operation is being requested: PutBuffer and GetBuffer have different require-
ments.

� When the request is made: If two activities call PutBuffer, the one that called first
should takeprecedence (in theabsence of priority).

� The synchronization state of the resource: The fact that an activity is currently exe-
cuting GetBuffer implies that another activity should be delayed in executing the
same procedure.

� The data state of the resource: GetBuffer is blocked if the buffer is empty.
� The history of accesses: We block PutBuffer if there haven’t been enough calls to

GetBuffer. We could pose this same constraint as part of the data state of the
resource.

Perspective 289

� The parameters to the operation: The data that are being put in the buffer do not
influence our solution, but we could imagine that some data are more crucial than
others.

� The identity of the caller: We would not like a producer to call GetBuffer.

Path expressions ignore the data state of the resource, the parameters to the operation,
and the identity of the caller. Invariant expressions concentrate heavily on the history of
accesses, expressing other items of interest (like the synchronization state and the data
state) in terms of that history.

Ease of use is a subjective criterion. Conditional critical regions are much easier to
use than monitors, but they are not in as widespread use. Invariant expressions seem
more usable than path expressions in the examples we have seen.

The choice of mechanisms for concurrency control depends on efficiency and on
intended use. Inside the operating system kernel, it often suffices to use the simplest lock
based on raising priority for short access to shared data; longer accesses that might
involve synchronization considerations (like placing data in a buffer) would have to use a
more expensive solution. If processes, which are outside the kernel, need to share data,
the kernel might give them a semaphore facility through service calls. This facility might
then be used to construct monitors or event counts.

The programming language chosen by the operating system writer has an obvious
influence on the solutions chosen for the kernel. For example, an operating system writ-
ten in Modula or Concurrent Pascal is likely to use the monitor-like concepts in those
languages. Similarly, the facilities offered by the operating system have an influence on
concurrency control between processes that share data (either virtual store or files).

4 FURTHER READING

Most of our understanding of concurrency control is due to the early work of a few
giants: Dijkstra, Hoare, and Brinch Hansen. T. J. Dekker introduced the non-alternating
switch in the early 1960s. This concept was generalized by Dijkstra (1965) to make the
spin switch. Peterson (1981) simplified the non-alternating switch. Monitors were
already in the works when conditional critical regions were designed. Hoare (1972) first
mentioned conditional critical regions, and Brinch Hansen (1980) later used them as the
principal mechanism for concurrency control in his language, Edison. Dijkstra (1971)
introduced the notion of a‘‘secretary,’’ the forerunner of the modern monitor, at the
same time conditional critical regions were introduced by Hoare. Dijkstra’s paper is
worth reading for his insight into the mutual-exclusion and synchronization problems and
his foresight of problems such as the nested monitor call. The term ‘‘monitor’’ was
introduced by Hoare (1974). Nested monitor calls have been discussed at length in the
literature; one place to find more discussion on this topic is in a paper by Haddon (1977).
Howard (1976) has shown that monitors with signal only at the end are strictly less
powerful than ordinary monitors. Thebroadcast version ofsignal has been used suc-
cessfully in Mesa (Lampson and Redell, 1980). Crowds are based on serializers, which
were introduced by Atkinson and Hewitt (1979) and generalized by Horn and Honda

290 Concurrency Chapter 8

(1977). Event counts and sequencers were introduced by Reed and Kanodia (1979), path
expressions by Campbell and Habermann (1974), and invariant expressions by Robert
and Verjus (1977).

The readers-writers problemhas been discussed by many authors; Courtois and
Parnas presented an early discussion (1971). One good place to read more is in an article
by Lamport (1977). The dining philosophers problem seems to have been introduced by
Dijkstra (1971).

A discussion of criteria for evaluating concurrency control mechanisms can be
found in a paper by Bloom (1979). Scott’s survey of languages for distributed computing
(1984) considers monitors and path expressions as a special case of the more general
topic of tools for distributed computation.

5 EXERCISES

1. Consider the following program fragments for processesA andB.

process A process B

1 for SeqA := 1 to 10 do for SeqB := 1 to 10 do
2 x := x + 1; x := x + 1;

Assume that the shared variable x starts at 0, that bothA andB execute once, and
that SeqA and SeqB are not shared variables. The two processes may execute at
any speed. What are the possible resulting values of x? Assume that x must be
loaded into a register for incrementing.

2. Consider Figure 8.1 again.
(a) We have seen that the actions to be performed could be partitioned into three
activities, {A,B,C}, {D,E,F}, and {G,H,I}, to achieve some constraints through
implicit synchronization. How many ways are there to partition the actions?
(b) Your answer to (a) most likely did not include any activities like {A,C}
because even though C must wait for A, which is implicit in {A,C}, it must also
wait for B, which would have to be explicit. If we allow such activities, how many
partitionings can you build?
(c) Your answer to (b) most likely did not include any activities like {C,D}. Why
not?

3. Disabling interrupts does not work correctly for nested regions. Rewrite the
BeginRegion and EndRegion routines to fix this problem.

4. Generalize the switch mechanism to three processes.

5. Does Dekker’s non-alternating switch use busy waiting ifB is in its region,
Turn = A, andA is trying to enter its region?

Exercises 291

6. Prove that Dekker’s non-alternating switch makes it impossible for an activity to
starve while it is waiting to enter its region, on the assumption that whenever the
conflicting activity enters its region, it eventually leaves that region.

7. Generalize Dekker’s non-alternating switch to three conflicting activities. (some-
what difficult)

8. Generalize Dekker’s non-alternating switch ton conflicting activities. (difficult)

9. Prove that Peterson’s non-alternating switch cannot starve either activity.

10. Prove that Peterson’s non-alternating switch guarantees mutual exclusion.

11. Generalize Peterson’s non-alternating switch ton conflicting activities. (hard)

12. Instead of test-and-set, some computers provide an atomic instruction that sets the
new value to 1 greater than its old value, as shown here:

1 atomic function TestAndInc(var Lock : integer) : integer;
2 begin
3 TestAndInc := Lock;
4 Lock := Lock + 1;
5 end TestAndInc;

Show how to use this instruction to implement locks. (Hint: You must be wary of
integer overflow.)

13. The Finishing and WaitFor routines in the text work fine if the entire synchroniza-
tion graph is to be executed just once. Show how to modify them so that if we
wish to run the entire graph again, the Done variables have the correct values.

14. What does a cycle in a synchronization graph mean?

15. Procedures Finishing and WaitFor associate with every activity a Done variable
that is set when the activity finishes. An alternative is to associate a Start variable
with every activity and have the activity check it before it starts. Show how the
synchronization graph of Figure 8.1 could be implemented in this way.

16. Show how to use semaphores to implement the synchronization graph so that each
semaphore is associated with an activity and the activity waits (perhaps a number
of times) for its own semaphore before starting.

17. We claim that a compiler can check for conflicting orders of nesting inregion
statements. Exactly how can the compiler accomplish this task?

18. Show why critical regions cannot implement the synchronization graph of Figure
8.1 without busy waiting.

19. Write a solution to thereaders-writers problem usingconditional critical regions,
making sure that readers and writers never starve. All you need to provide is Star-
tRead, EndRead, StartWrite, and EndWrite. (Hint: Separate readers into platoons.
The next one starts filling as soon as a writer arrives. Alternate a platoon of
readers with a single writer.)

20. Write a monitor solution to thereaders-writers problem. (Seethe discussion for
exercise 19.)

292 Concurrency Chapter 8

21. Find a case where it would be desirable for an activity that executessignal in a
monitor to perform more work before leaving the monitor.

22. Implement semaphores using monitors.

23. We need mutual exclusion to implement Ticket. Do we also need mutual exclu-
sion to implement Advance?

24. Show the program for the consumers in an event count and sequencer solution to
multiple producers, multiple consumers.

25. Show how to use the DoubleDown procedure to implement the dining philosophers
problem. Describe what can go wrong if we don’t use MutualExclusion in imple-
menting DoubleDown. Would the same problem occur if the declaration of Mutu-
alExclusion were at line 6 instead of line 2?

26. Does the following path-expression solutionto the readers-writersproblem work?
What policy does it enforce?

1 path EnterRead
2 path TryRead | { TryWrite }
3 path { StartRead; Read } | Write
4 let EnterRead = TryRead
5 let TryRead = StartRead
6 let TryWrite = Write
7 let DoRead = EnterRead ; Read
8 let DoWrite = TryWrite

27. Does the following path-expression solutionto the readers-writersproblem work?
What policy does it enforce?

1 path EnterWrite
2 path { TryRead } | TryWrite
3 path { Read } | (StartWrite ; Write)
4 let TryWrite = StartWrite
5 let EnterWrite = TryWrite
6 let TryRead = Read
7 let DoRead = TryRead
8 let DoWrite = EnterWrite; Write

28. Show how to implement path expressions with semaphores. (difficult)

29. Write a path-expression solutionto the multipleproducer-consumer problem.

30. How would you implement invariant expressions using conditional critical
regions?

31. What advantage do invariant expressions have over conditional critical regions?

32. Our invariant-expression solution to the producers-consumers problem serializes
concurrent producers. Rewrite the solution so that producers are serialized only
long enough to reserve slots but may fill those slots in parallel. Make sure that the
GetBuffer procedure never takes data from an empty slot.

33. The Sequent Balance 21000 multicomputer has a hardware test-and-set instruction.
How can this instruction be used for limited busy waiting, as suggested by the Hys-
teresis Principle, but not cause long busy waits?

Exercises 293

chapter 9

CO-OPERATING PROCESSES

In Chapter 8, we concentrated on the contention issues raised by multiple activities. The
opposite of contention is co-operation. In this chapter, we will see ways in which
processes can co-operate and what the operating system might provide to promote such
co-operation.

A simple form of co-operation is when an interactive command interpreter starts a
new process in response to a command and then waits until that process completes before
prompting for the next command. A more complex form, pioneered by Unix, is to solve
problems by building fairly simple processes and linking them together so that their joint
behavior is more complex. For example, assume that we wish to list the names of all the
files in a directory in alphabetical order. We could have the directory-listing program
accept a #Sorted flag. The Unix-style alternative is to connect the output of the
directory-listing program to the input of the sorting program. This philosophy reduces
the responsibilities of ordinary programs because they will need to provide only limited
services, not fancy ones that can be placed in other programs.

The recent advent of networks of computers linked together in various ways has
given great impetus to the search for mechanisms for inter-process co-operation. The
challenge raised by these networks is for the operating system to provide an environment
for processes so that they can do their work no matter what machine they are on and no
matter what other processes they need to communicate with.

This chapter deals with process interactions. We will start by seeing how one pro-
cess can create another. Then we will see how processes can communicate with each
other. We will close by seeing how communicating processes can form co-operating
communities.

294

1 PROCESS CREATION AND NAMING

Operating systems differ widely in how frequently they start new processes. A spooling
system has only one process, which repetitively selects a job and runs it. Multipro-
grammed operating systems introduced simultaneous execution of several jobs. Typical
batch multiprogramming operating systems initialize themselves to have a fixed number
of processes. Each process runs one job, or one job step, until completion, and then looks
for another job or job step to run. Alternatively, each job step can be treated as a new
process, created by the job controller at the conclusion of the previous step.

Interactive multiprogramming started with a similar philosophy. Each interactive
terminal is initialized with one process, which serves any user of that terminal from logon
to logoff. As the user cycles among editing, compiling, running a program, and debug-
ging, the process that serves that user loads new programs into virtual store and executes
them.

Users tend to be impatient, however, and often want to do other work while wait-
ing for a long compilation, execution, or text formatting to finish. Some interactive
operating systems retain a batch facility for this purpose, allowing the user to submit the
long operation as a job to that facility and continue to use the interactive process for
something else.

A fundamentally different approach is seen in Unix and related operating systems.
Instead of initializing the operating system to have a fixed number of processes based on
the number of terminals or the maximum allowed level of multiprogramming, we can
allow processes to be created at any time. If process creation is fairly inexpensive, com-
putation can be organized naturally into relatively small pieces, each of which is per-
formed by a new process. If several processes are working simultaneously for a single
user, they compete with each other and the other processes currently requesting service.

This cheap-process philosophy affects the way users view the operating system
and the way individual programs work. A user who wants to execute a long compilation
and also edit a file might start two processes, one for each operation. The compilation
program itself might be built of several passes, each of which is implemented in a
separate process. These processes can execute sequentially. Such separation of function
is a form of modularity, which can make programming and maintenance easier. An
extreme example of this philosophy is seen in the Thoth operating system, in which the
text editor creates a new process to service every editing command.

One effect of the cheap-process philosophy is seen in the structure of the command
interpreter. It is itself a process, and it creates a new process for every command. When
that new process terminates, the command interpreter prompts for a new command. If
the user doesn’t want to wait for the previous command to finish, the command inter-
preter can be told to prompt immediately for the next command.

Process creation and naming 295

1.1 Service calls

Operating systems provide several process-creation service calls for the benefit of the
command interpreter or any other process that might want to start a new process and wait
for it to finish. A typical set of calls includes the following.

� Load(file name). This call tells the operating system to take the load image stored
in the named file and load it into a fresh process. The Load call returns some
identification for the new process, usually represented as a number.

� Join(process number). This call blocks the caller until the process with the given
number has terminated.

In addition, some operating systems provide simpler forms that have a similar power.

� Split. This call creates a new process that is just like the old process with respect
to the contents of virtual space (although they don’t actually share virtual space)
and with respect to what files are open. We say that the new processinherits the
environment of the old one. The Split call returns a 0 to the child and the child’s
process number to the parent, but otherwise they are identical.

� Execute(file name). This call tells the operating system to discard the virtual
space for the calling process and to replace it with a load image stored in the
named file.

The effect of Load can be achieved by Split followed by the child requesting Execute.

1.2 Programming language syntax

The service calls just listed also appear in some programming languages intended for use
in distributed programming. For example, a process call in Modula can be seen as a
shared-store Split call followed by the child jumping to the code for the desired process.
Since it is so common to start a set of shared-store processes and then wait for all to
finish, a number of programming languages provide acobegin construct that looks like
this:

cobegin
statement executed by process 1
statement executed by process 2
...
statement executed by process n

coend

This structure is equivalent ton Split operations, with each child executing its own state-
ment and then terminating. The parent executesn Join operations to await the children’s
completions. However, one must be careful to distinguish between two different imple-
mentations of thecobegin construct (or any other process-creation construct) in program-
ming languages:

296 Co-operating Processes Chapter 9

� When simulated by the programming language, we call the programming-language
processesthreads to distinguish them from operating-system processes. As far as
the operating system is concerned, there is only one process. The run-time support
routines for the language include a scheduler that switches among the threads.
This approach allows threads to share data (within the scope rules of the language)
without involving the operating system in data-security issues.

� When simulated by the operating system, the process-creation construct of the
language is implemented by asking the operating system to start a new process.
Shared data require that the operating system assist by letting the processes share
part of their virtual space.

2 INTER-PROCESS COMMUNICATION

2.1 Semaphores

The fact that one process can wait for another to finish is a simple form of communica-
tion that involves only synchronization. As we saw in Chapter 8, the kernel can make
semaphores available to processes through service calls for creation and use. For several
processes to share the semaphore, we must have some way for them to discover the
semaphore name. In Chapter 8, we suggested that semaphores be inheritable. Alterna-
tively, semaphore identifiers could be passed in messages (described shortly) or placed in
shared files.

2.2 Virtual interrupts

We have already seen virtual interrupts in Chapter 5 as a way for processes to be
informed that asynchronous transput has completed. They can also be used as a primitive
form of inter-process communication. We can introduce a service call that lets one pro-
cess cause a virtual interrupt in another.

� Interrupt(process number, interrupt number). This call sends the given inter-
rupt to the given process, if permitted.

In order to prevent processes from sending unwanted interrupts to arbitrary processes, we
might want to restrict interrupts in any of the following ways:

Inter-process communication 297

� Interrupts may be sent only to children or other descendants.
� Interrupts may be sent only to processes owned by the same user.
� Processes create an ‘‘interrupt identifier,’’ which is inherited by children. The

Interrupt service call specifies the interrupt identifier instead of a process number,
and all processes that have that identifier receive the interrupt.

When a process is the target of a virtual interrupt, it is usually forced into its inter-
rupt handler. We might provide the following service call, which allows processes to
choose alternative reactions to virtual interrupts:

� Handle(interrupt number, method). The most straightforward method is
‘‘ignore.’’ The process is then immune to any virtual interrupts of this type.
Another method is ‘‘quit,’’ which indicates that the process considers this class of
interrupt so severe that it prefers to terminate if the interrupt occurs. A related
method is ‘‘abort,’’ which terminates the process and generates a dump of its vir-
tual space. Yet another method is ‘‘wait,’’ which tells the operating system that
the process would like to be blocked until such an interrupt occurs. Finally, the
process might provide an interrupt handler that is to be invoked upon receiving the
interrupt.

Some virtual interrupt numbers might be reserved by the operating system for predefined
sorts of information, such as the following:

� The user typed the ‘‘attention’’ key.
� A child has terminated. If this event can cause a virtual interrupt, the Join service

call is not needed.
� The process has performed an invalid arithmetic operation, such as dividing by

zero.
� The process must terminate. We might disallow associating a handler with this vir-

tual interrupt.
� A timer set by the process has expired.
� Some limit, such as file size or virtual time, has been exceeded.
� The process must stop, but it may be started later by its parent.
� The process has been restarted after a stop.
� A child has stopped or otherwise changed status.
� Data are available for input from a device.
� The display window to which this process is connected has changed shape.

All these interrupts have one aspect in common: They tell the process that its environ-
ment has changed in a way that it may need to know about.

2.3 Pipes

As mentioned earlier, Unix provides an inter-process communication mechanism that
allows the output of one process to become the input of another. The heart of the
mechanism is the concept of apipe, which is very much like a file opened for reading or

298 Co-operating Processes Chapter 9

for writing. Pipes are constructed by a service call like this:

� CreatePipe. This call opens a new pipe and returnstwo descriptors for it. One is
the read descriptor, and the other is the write descriptor.

The Read and Write operations available on files work just as well for pipes. Any infor-
mation written to the pipe is later available by reading from the pipe. Of course, the ker-
nel may wish to buffer only a limited amount of data for each pipe, so Write may block
the caller if the pipe is too full. Likewise, Read will block the caller if the pipe is empty.
In these cases, the Hysteresis Principle says that on a multiprocessor, it may be better to
wait a while before process switching. The pipe may become nonfull or nonempty soon,
and the process switch can be avoided.

Pipes are inherited by children. Figure 9.1 shows how a processA first creates a
pipe, then calls Split, becoming processB andC. ProcessB then closes the read end of
the pipe, andC closes the write end, leaving a simple one-way communication link
between them.

If the childrenB and C fail to close the appropriate ends of the pipe, confusion
may result. In Figure 9.2 we show a situation where firstB writes 6 bytes on the pipe,
then another 4 bytes. Next,C reads 5 bytes, and finallyB reads 4 bytes.B will end up
missing the first 5 bytes, andC will never be able to read the next 4 bytes. One byte
remains unread. The rule is that whichever process reads the next bytes gets them.

We can enhance pipes in two ways. First, we can give them thebroadcast pro-
perty, which says that any data written to the pipe are saved until all the readers have

CC BBAA

Figure 9.1 Building a pipe

0 4 5 10

C reads B reads unread

unwritten

91 2 3 6 7 8

B writes B writes

Figure 9.2 Reads and writes on a pipe

Inter-process communication 299

seen them. A broadcast pipe would giveC the first 5 bytes on the pipe, then giveB the
first 4 bytes, leaving 5 bytes unread byC and 6 bytes unread byB. This situation is
shown in Figure 9.3.

As you can see, broadcast pipes require much more state information to be saved
by the pipe manager (as we will call this component of the kernel) for each pipe — all
the data that have not yet been read by even one of the processes having this pipe open
for reading, and a pointer for each process indicating which byte it will read next. In
contrast, a non-broadcast pipe has less state information — just the data that have not
been read.

Second, we can define pipes with thedelimiting property, which says that the pipe
remembers boundaries between one write and the next. We provide two kinds of read:

� ReadBytes(pipe number, how many). This call returns the given number of
bytes from the pipe, blocking the caller if that many bytes are not yet available.

� ReadRecord(pipe number). This call returns bytes up to the next boundary
between two writes.

In Figure 9.4 we showB writing just as before. NowC first executes ReadRecord, get-
ting 6 bytes. IfC then executes ReadByte for 2 bytes, it takes part of the next record.
Finally, C can get the rest of the current record by calling ReadRecord.

0 4 5 10

C reads

unwritten

91 2 3 6 7 8

B writes B writes

B reads

unread by C

unread by B

Figure 9.3 Reads and writes on a broadcast pipe

record
C reads

0 4 5 10

unwritten

91 2 3 6 7 8

B writes B writes

C reads record C reads unread

Figure 9.4 Reads and writes on a delimited pipe

300 Co-operating Processes Chapter 9

Ordinary Unix pipes are neither broadcast nor delimiting. They are practically
never intended for multiple readers or multiple writers. Under these constraints, pipes
unify terminal transput with file transput and with process transput. Pipe descriptors
behave just like file descriptors as far as reading and writing are concerned. They also
behave just like device descriptors, which are used for transput with the terminal. This
unification is elegant in that the transput interface between processes and the outside
world is built entirely on a single concept.

Processes expect that they will have two descriptors when they start, one called
‘‘standard input’’ and the other ‘‘standard output.’’ Typically, the first is a descriptor to
the terminal open for input, and the second is a similar descriptor open for output. How-
ever, the command interpreter, which starts most processes, can arrange for these
descriptors to be different. If the standard output descriptor happens to be a file descrip-
tor, the output of the process will go to the file, not the terminal. The process does not
know about this substitution and does not care. Similarly, the command interpreter can
arrange for the standard output of one process to be one end of a pipe and for the other
end of the pipe to be standard input for a second process. This situation is shown in Fig-
ure 9.5, where a listing program is piped to a sorting program, which in turn directs its
output to a file.

2.4 Ports

Unix pipes are a special case of a more general inter-process communication mechanism
calledports. A port is a repository of data being sent from one process to another. It is
like an anonymous postal address in the sense that the two processes involved in the
communication do not need to know anything about each other’s identities.

Ports are often used to represent services that one process can offer others. For
example, many interactive operating systems have a program called Finger that will
report who is logged on. It is sometimes convenient for a user on computerA to invoke
Finger on computerB. Both computers can run operating systems that follow an inter-
process communication convention in which a particular port, say 79, represents the
Finger service. The user on machineA runs a program that sends a message asking for
this service to port 79 on computerB. The Finger program spends its idle time blocked
trying to read from this port. When a request arrives, Finger receives it from the port,
compiles a list of the users currently logged on, and sends this list back to the program on
machineA. This reply might be directed to a port that the program on computerA
opened just for the purpose of hearing the reply. The original request fromA included

fileSortListterminal

Figure 9.5 A pipeline of two processes

Inter-process communication 301

the identity of the return port so that Finger would know where to answer.
Not all port designs share the properties we used in this Finger example. In the fol-

lowing sections, we will distinguish different port philosophies.

Data. Just like pipes, ports can be distinguished by whether they are delimit-
ing and by whether they have broadcast. Some ports allow arbitrarily long messages,
whereas others restrict message size, often to just a few bytes.

Another distinction involves reliability. Messages sent between computers can fail
to arrive or can be garbled because of noise and contention for the communication line.
As we saw in Chapter 5, there are techniques to increase the reliability of data transfer.
However, these techniques cost both extra space (longer messages to increase redun-
dancy, more code to check the messages) and time (delays and retransmissions). Some
types of inter-process communication do not require a high degree of reliability. For
example, the transfer may be part of a transaction (as described in Chapter 6) with its
own consistency checks and the ability to abort cleanly if it fails. In such a context, relia-
bility at the lower levels of communication (making sure that each transmission succeeds
or that each message arrives) cannot itself ensure success of the overall transaction. The
only reason to pay for reliability at the lower levels is to increase the overall efficiency of
the transaction by decreasing the likelihood that it will have to be repeated.

A final data issue is whether messages sent to a port are received in the order in
which they are sent. Differential buffering delays and routings, especially in a network
environment, can place messages out of order. It takes extra effort (in the form of
sequence numbers and, more generally, time stamps) to ensure order. For inter-process
communication within one computer, however, order is usually easy to guarantee.

Access. Pipes allow any number of writers and readers, although usually there
is only one of each. Different approaches to inter-process communication have been
designed that impose various restrictions on the access to ports. Abound port is the
most restrictive: There may be only one writer and one reader. This restriction allows the
operating system to implement the port with great efficiency. The state of the port can be
described by considering only two processes. Unread data may be buffered by the port
manager as part of the reader’s process state.

At the other extreme, thefree port allows any number of writers and readers. We
have seen that free broadcast ports are complex. Even without broadcast, free ports are
more complex. For example, unread data cannot be stored as part of the state of any one
process but must be kept as part of the port itself. In cases of network operating systems,
the port’s data storage may end up on a machine distant from both readers and writers,
with the result that extra inter-machine messages are needed to complete a transfer.

Between these extremes areinput ports andoutput ports. An input port has only
one reader but any number of writers. This arrangement is useful in the situation in
which any number of clients may need help from the same server. Operating systems
that provide input ports usually consider each port to belong to the process that can read
from it. Such a concept of ownership does not apply to free or bound ports.

Output ports, in contrast, are not particularly useful: They allow any number of
readers but only one writer. One application for such a port is for print servers. Assume
that a process has many unrelated sets of data to print. It could send each as a message to

302 Co-operating Processes Chapter 9

its output port for printing. Each printer could wait for messages from that port when
idle, and several data sets could be printing at once. The various kinds of ports are pic-
tured in Figure 9.6.

Naming and transfer. We have seen that Unix pipes have no names but
are referred to instead by pipe descriptors that act much like file descriptors. Since
descriptors can be passed between processes only by inheritance, this naming strategy
limits communication to related processes.

There are many other ways to establish connections. For example, the file struc-
tures could includeport files, which are neither directories nor data files. A process that
opens a port file receives a port descriptor, which can be used for writing or reading,
depending on the manner in which the port was opened. Whatever file security mechan-
isms are used for other files apply to port files as well.

Port files are one way to associate names with ports. Another way is to have port
numbers that are globally accessible, unlike port descriptors, which have meaning only
within a particular process and its descendants. Some of these numbers can have a pub-
lished and fixed meaning, such as ‘‘the port for requesting the Finger service.’’ Other
numbers could be allocated and released on demand. We could use the following service
calls:

� CreatePort(port number). This call returns the number of a newly created port.
If the port number given is the special value ‘‘new,’’ the port manager allocates a
currently unused number. The creating process becomes the owner of the port.

free port

bound port

input port

output port

Figure 9.6 Four kinds of ports

Inter-process communication 303

� DestroyPort(port number). This call deallocates the port. Any process that has
the port open finds it closed and might be notified by a virtual interrupt.

A process that wishes to use the Finger service executes the following program.
1 const
2 FingerPortNumber = 79;
3
4 var
5 MyPortNumber : PortNumber;
6 MyPortDescriptor, FingerPortDescriptor : PortDescriptor;
7 FingerMessage : string;
8
9 begin
10 { Initialization }
11 MyPortNumber := CreatePort(new);
12 MyPortDescriptor := OpenPort(MyPortNumber,read);
13 FingerPortDescriptor := OpenPort(FingerPortNumber,write);
14 { Make request }
15 Write(FingerPortDescriptor,MyPortNumber);
16 { Get Answer }
17 Read(MyPortDescriptor,FingerMessage);
18 { Finalization }
19 ClosePort(FingerPortDescriptor);
20 ClosePort(MyPortDescriptor);
21 DestroyPort(MyPortNumber);
22 end

Figure 9.7 shows the ports and the messages that are sent. The calling process,A, first
makes a new port that it will use to get the answer (line 11). It opens this port (line 12) to
listen for the answer and opens the well-known Finger port (line 13) to make its request.
The request itself (line 15) includes just the ‘‘return envelope,’’ that is,A’s port number.
The Finger server will read this request, openA’s port for writing, write the answer there,
and then close that port.A waits (line 17) for the answer to arrive and then releases both
its port descriptors (lines 19−20) and its personal port (line 21). The port manager in the
kernel makes sure that only owners destroy ports.

How are well-known port numbers different from port files? The main difference
is that port numbers are more widely accessible. Any process that knows its number can
open a well-known port, whereas only those processes that have access to the port file
may open its port. The port file can be protected just as can any other file. The increased
accessibility of port numbers is especially important if the computer is part of a loosely
coupled network, such as Arpanet, which connects hundreds of computers across North
America and Europe. The managers at an installation may not want to make the file
structures accessible to outside processes, and the operating system may have no way to
open a file or to search a directory on behalf of a process outside the machine. Nonethe-
less, many operating systems allow distant processes to open connections on well-known
ports. For security, the server (like Finger in our example) could be informed whenever
its port is opened and could reject the connection.

Our Finger example shows two shortcomings of well-known ports. First, the port
that A created for the answer is public in the sense that any other process might have
guessed its name, opened it, and written to it. Second, knowing a port number is not the
same as having a port descriptor; the latter must be derived from the former by an Open-
Port call. We can limit the dissemination of ports and unify numbers with descriptors by
introducingport capabilities.

304 Co-operating Processes Chapter 9

A

Finger port

Finger

A

Finger port

Finger

A’s port

A

Finger port

Finger

A’s port

request

response

Before line 10

After line 15

After line 17

Figure 9.7 Using well-known ports

A process that creates a port is given a port capability by the port manager in the
kernel. This number is like a port descriptor in that it has meaning only to that process
and is used in the ReadPort and WritePort calls to specify which port is being used.
However, we allow the process to write this capability as part of a message (sent to any
port). The process that receives the message now has the transmitted capability and may
use the port it refers to.

Transfer of capabilities can be used to introduce two processes to each other. For
example, let us build the equivalent of a pipe between the List and Sort processes, such
as was shown in Figure 9.5. We will use bound ports for this example, although other
kinds could work as well. Since bound ports may have only one reader and one writer,
we will stipulate that when a process writes a port capability to a port, it loses that capa-
bility. We will assume the following service calls:

� Load(load-image file). This call builds the new process and also builds a new
bound port. It returns to the caller (the parent) the write capability for that port and
initializes the new process (the child) with a read capability for the port.

� CreatePort. This call builds a new bound port and returns both the read and the
write capability.

Inter-process communication 305

Here is what the command interpreter might do to connect List and Sort:
1 var
2 ToList, ToSort, MyRead, MyWrite : PortCapability;
3
4 begin
5 ToList := Load(List);
6 ToSort := Load(Sort);
7 MyRead, MyWrite := CreatePort();
8 Write(ToList,MyWrite);
9 Write(ToSort,MyRead);
10 ClosePort(ToList);
11 ClosePort(ToSort);
12 end

This scenario is pictured in Figure 9.8.
Port capabilities allow processes like Sort and List in the previous example to be

introduced to services without needing to know any name for the service. For the pur-
pose of debugging or monitoring, the command interpreter can substitute other capabili-
ties for the ones expected by the children.

After line 9

After line 7

SortList

Command interpreter

SortList

Command interpreter

Figure 9.8 Connecting two processes

306 Co-operating Processes Chapter 9

Port capabilities are much more complex to implement than port numbers. Before
we introduced port capabilities, messages were uninterpreted streams of bytes. Delimited
ports required the port manager to keep track of message boundaries, but otherwise it
could ignore the meaning of the bytes written to the port. The port manager must now
realize when a port capability is being sent in a message so that it can remove the port
capability from the writer and later install it in the reader. If port capabilities are
represented to the process as small integers, like port descriptors, then a port capability
that is sent in a message may have to be changed before it is received because the port-
descriptor number in the writer may already be in use for something else in the reader.

The operating-system designer must also decide when to install the new port capa-
bility in the reader’s capability list. It could do so as soon as the message arrives at the
port, but the reading process might not try to read the message for a long time. In fact, it
might terminate without reading the message, or the port might be destroyed by its
owner. In this case, the designer must decide whether the capability should be returned
to the writer or should be discarded.

2.5 Semantics of Read and Write

We have been using Read and Write as synchronous calls, and we have been assuming
that ports store data that have been written but not yet read. Neither of these choices is
necessary. First, we could have both callsinitiate action but not block the calling pro-
cess. The caller could discover completion by polling, by virtual interrupt, or by waiting
explicitly for completion later. Such asynchronous communication introduces new situa-
tions that must be given meaning. For example, what does it mean to call ClosePort if
there is a ReadPort or WritePort still active? What does it mean to send a port capability
in a message if that same port capability is still in use for some ReadPort or WritePort
call?

Another alternative to synchronous write is to block the caller until a reply comes
from the recipient. The Hysteresis Principle implies that if the reply is expected in less
time than is needed for a process switch, the caller should not be preempted in favor of
another process for that expected time in the hope that no process switch will be neces-
sary at all. The recipient would use a Reply service call to indicate that its message is a
response to the previous one it received. Reply itself does not block. This approach
requires that the port allow messages in both directions.

Second, we could relieve the port manager of the responsibility for buffering
unread data by keeping such data in the virtual space of the writer until they are read.
This decision is independent of whether Read and Write are synchronous. An unbuffered
write does not complete until its data have been read from the port. Until the unbuffered
write completes, it is an error for the writer to modify the data being written because the
port manager has not made a copy. It can be more efficient to implement unbuffered
communication, since data don’t have to be copied as often.

A process with several open ports may wish to read next from whichever one has
data. Alternatively, it may wish to read from a particular port but ignore data on other
ports for the time being. An even greater level of selectivity is to accept only messages
that have a particular form but to ignore others for the time being. Operating systems

Inter-process communication 307

with ports provide varying degrees of selectivity for ReadPort. For example, the Demos
operating system, which uses capabilities that allow the holder to write to input ports, lets
the ReadPort call specify any subset of input ports. In contrast, the Charlotte distributed
operating system, which uses capabilities to bound ports, allows ReadPort to specify
either all ports or just one, but not an arbitrary subset. The Soda inter-process communi-
cation mechanism allows the recipient to look at a small amount of the message before
deciding whether it wants the message.

3 DISTRIBUTED OPERATING SYSTEMS

Once an operating system provides inter-process communication, it lends itself to imple-
mentation on a distributed computer. Before we discuss how to generalize uniprocessor
operating systems to more general machines, we will need to define the sorts of machines
we will discuss.

Computer installations often experience crises in which the available resources no
longer satisfy the demand that users are making. The first action a manager might take is
to determine thebottleneck — that is, the limiting resource. It may be that adding an
additional disk unit or replacing a device controller with a faster one will remove the
bottleneck. Often installing more main store will increase throughput to an acceptable
level. Or the limiting resource may be computation: More work is being presented to the
computer than can be completed. In this case, it is necessary either to replace the current
computer with a faster one or to introduce new computers.

Both these approaches are common. Manufacturers make several models of their
computers that differ in cost, performance, and modernity. The newer and the faster
models usually support the same instruction set as the older and the slower models. An
operating system that runs on one computer will often run without modification on
another model of the same machine.

3.1 Multiprocessors

A related approach offered by some manufacturers is to add a second or third central pro-
cessing unit to the machine. When several cpu’s share a common main store, we call the
resulting machine amultiprocessor. Main store is often subdivided into independent
modules, each of which can service one access request (from a cpu or a channel) at a
time. The purpose of this division is to allow separate cpu’s to access modules simul-
taneously if the requests do not conflict. If there are several cpu’s, a switching network is
used to direct requests from cpu’s to the correct main store module. This switching net-
work introduces new delays and contention points because two requests directed to dif-
ferent main store modules might still have to traverse the same switch.

Converting a uniprocessor operating system to a multiprocessor requires careful
attention to concurrency issues, as discussed in Chapter 8. One successful approach is to

308 Co-operating Processes Chapter 9

let one machine handle all the devices and to let the other execute processes. Another
approach is to treat the machines equally and let devices interrupt whichever machine
will currently allow interrupts. Under this approach, an idle machine waits until there is
a process on the ready list, and then it executes that process. All data structures that are
shared by several machines, such as the ready list and device-request lists, must be
guarded in regions of mutual exclusion.

Instead of modifying an existing operating system, one may design a new operat-
ing system with inter-process communication as the primary structuring tool. We will
discuss this approach later when we deal with multicomputers.

3.2 Local-area networks

Instead of upgrading the current machine to a faster model or to a multiprocessor, many
installations choose to buy an independent new computer. If the new computer is of the
same type as the old one, the same operating system can be run on the new one, and
software developed for the old one will run on the new. If the new computer is different,
it will usually have a different operating system. Users will have to learn the peculiari-
ties of the new system and may have to modify their software extensively.

The agony of transporting programs to the new computer can be mitigated by con-
necting the computers by a communication device. A user who has an investment in
software on the old machine might still be able to submit jobs to that machine across the
communication device from the new machine. The results of the jobs can be shipped
back to the new machine and stored in its file system. This style of computing is called
remote job entry.

As the installation purchases more computers, they are added onto the network of
machines either by direct connection to some of the machines already there or by a con-
nection to a shared communication device, like an Ethernet. Historically, each installa-
tion that built such alocal-area network would develop its own protocols for inter-
machine communication. Later, manufacturers developed their own protocols. For
example, Digital Equipment Corporation has a protocol known as DECnet for intercon-
necting its machines. More recently, international standards have been designed for
inter-machine protocols. These standards describe a number of distinct levels in order to
promote modularity. In particular, the following levels can be distinguished:

� Host-to-line level: Defines the meaning of various wires and what voltages they
should have.

� Host-to-switch level: Defines how acknowledgements are generated and what
parts of a message contain routing and sequencing information.

� Host-to-host level: Defines how connections are built, used, and destroyed
between two computers.

� Process-to-process level: Defines how individual processes request and provide
services. Certain standard services (like the Finger server) have protocols defined
at this level.

Distributed operating systems 309

These particular divisions are not necessarily standard. The CCITT/ISO model, for
example, distinguishes seven levels of protocol. Each network tends to build its own pro-
tocols, and the levels at which services are defined tend to fit only roughly into any stan-
dard description.

Each protocol level builds an abstraction, according to the Beautification Principle,
both to hide details of the lower levels and to introduce new structures. In the language
introduced by the ISO model, each level provides ‘‘service data units’’ to the next level
up. In order to perform its function, it uses ‘‘protocol data units’’ built on the service
data units of next lower level. This structure is shown in Figure 9.9, which shows the
names of some of the ISO levels. The protocol data units and service data units for the
ISO model change at each layer. At the atomic level, electrons are discrete. (We will not
concern ourselves with quantum-mechanical details.) At the aggregate level, physics
becomes continuous, with measures such as voltage and current. The physical level (the
lowest ISO level) is discrete, providing bits. The data-link level groups bits into frames,
which it transports reliably. This level uses acknowledgements and sequence numbers as
part of its protocol data units. The network layer converts frames into packets, which
provide routing, congestion control, and accounting services. The transport layer pro-
vides arbitrarily long data segments, transmitting them as numbered packets and
reassembling them at the other end. The division into packets is hidden from view, but
segment boundaries are still made visible. (The U. S. Department of Defense TCP proto-
col, in contrast, also hides the sender’s segment boundaries from the receiver.) Higher
levels also provide new services built on lower ones, such as checkpointing and convert-
ing between different floating-point formats.

physical

data link

network

transport

physical

data link

network

transport

protocol data units

service data units

Computer A Computer B

Figure 9.9 Protocol levels

310 Co-operating Processes Chapter 9

3.3 Long-haul networks

These protocols were initially designed forlong-haul networks, although they have been
used since in local-area networks as well. A long-haul network is a collection of widely
scattered computers connected by a common communication network following a set of
protocols. The Arpanet, mentioned earlier, is a good example of such a network. It is
part of the Arpa Internet, which also includes MilNet (military sites), SatNet (satellite
links), and many local networks. There are at least 2000 computers in the Internet.
Routing of messages is automatic, based on a hierarchical addressing scheme and a back-
bone of relay computers. Messages are divided into packets, each of which is routed
separately.

The computer on which this text was created is a member of a local-area network,
part of the Arpa Internet, that connects it to other local research and instructional
machines. The machine is thereby connected as well to CSNET, BITNET, and the
UUCP network. CSNET is an organization connecting academic computer science
departments. It uses both Arpanet and PhoneNet, which has a central computer that
phones member sites on a regular basis to collect and deliver messages. BITNET con-
nects over 1500 computers worldwide using dedicated leased lines. Routing of messages
is performed automatically, using manually maintained files distributed from a central
site. The UUCP network is is a community of perhaps 10,000 computers that use the
UUCP (Unix-to-Unix copy) protocol, usually over telephone connections. It is by no
means restricted to Unix sites. Routing of messages is often explicitly specified by the
source computer.

Networks can be connected together my means ofgateway computers that reside
on two or more networks. They relay packets from one network to the other, modifying
the format when necessary to accommodate the different protocols. They must some-
times divide packets in order to obey packet-length requirements. A single message may
go through several gateways as it makes its way from a local area network through
several long-haul networks until it reaches its final destination.

Long-haul networks often provide a number of services, most important of which
is the ability for users to mail messages to each other across the country. Naming con-
ventions for mail addresses are not standardized across networks, but recent attempts to
unify addresses have been helpful. A more general way to transfer information is by
transferring files from one machine to another across the network.

Another service isremote logon, which allows a user to log on to a machine
across the network. Every character typed by such a user is typically transmitted through
the network to the distant machine, echoed there, and sent back to the local machine. Of
course, most installations require that users who want to log on to their machines must
have accounts (and passwords) for those machines.

Long-haul networks also provide information services that allow one to obtain
information about users of any machine on the network. For example, the Finger server
we have been discussing is available on many machines and allows remote requests
about the local user community. Some machines maintain databases of information
about the entire user community of the network. These databases may be queried from
any machine in the network. Information often includes mail addresses (both computer

Distributed operating systems 311

and normal postal service), telephone numbers, and current projects.
A new facility supported by software on many machines is abulletin board,

which accepts notices posted by individuals and makes them available to all interested
users. Typically, notices are cataloged by subject, and users may subscribe to particular
subjects that interest them. Distributed bulletin boards on long-haul networks allow peo-
ple with common interests across the country to participate in continuing discussions.

These facilities of long-haul networks have recently become standard within
local-area networks as well. For example, BSD4.2 and BSD4.3 Unix are available on a
number of different machines, including computers made by Digital Equipment Corpora-
tion, Gould Corporation, Sun Microsystems, and Pyramid Technology. This operating
system includes drivers for a number of communication devices. A local-area network of
machines running this operating system automatically enjoys remote job entry, remote
logon, mail, remote file transfer, and user-information services.

3.4 Multicomputers

The uses mentioned for local-area and long-haul networks omitted one important possi-
bility — complex algorithms that require several machines in order to achieve acceptable
performance. Distributed algorithms have not been commonly run on such networks,
mostly because the area of distributed algorithms is still quite young. Recently, however,
several operating systems have been designed with the goal of unifying a local-area net-
work into a single operating system.

Multicomputers are different from the multiprocessors we saw earlier in that mul-
ticomputers do not share main store but send messages to each other in order to co-
operate. We distinguish multicomputers from networks in that multicomputers have a
single operating system that governs all the individual machines, whereas a computer
network is built of autonomous machines often under separate management.

These distinctions are not always simple. A recent trend toward less expensive
computers has led to the emergence of theworkstation, a powerful one-user computer,
usually with a small local disk and a high-quality display. The workstations at an instal-
lation are usually linked by a network so that they can share expensive devices like
printers and large secondary store. All the workstations use the same operating system,
but each has its own copy and is mostly autonomous. However, each might provide ser-
vices to the others on request, and processes on separate machines can communicate with
one another through the network. Except for that facility, the operating systems on the
workstations are fairly conventional. Workstation networks occupy a role somewhere
between computer networks and true multicomputers.

Operating systems designed especially for multicomputers often resemble those
designed especially for multiprocessors. Certain characteristics are fairly common in
these operating systems:

� Each machine has a copy of the code necessary for communication and primitive
service to processes (such as setting up mapping registers and preempting at the
end of a quantum). This code is the kernel of the operating system.

312 Co-operating Processes Chapter 9

� The environment of a process is defined by the communication ports it has access
to and the processes that serve those ports.

� It makes no difference to a process what machine it runs on, except for its speed of
execution and communication. Processes that deal directly with devices are an
exception to this rule.

� Policy decisions, such as on which machine to run a new process, are made outside
the kernel by utility processes.

� Utility processes are also used for accessing files and performing transput. Ser-
vices are therefore represented by open ports to these utility processes.

� When one machine fails, the performance of the entire operating system is
degraded, but only work that was under way on the failed machine is actually lost.
Suitable redundancy can ensure that nothing at all is lost.

One feature that is only beginning to be seen in distributed operating systems ismigra-
tion of processes from one machine to another to improve the balance of load and to
shorten communication paths. Migration requires a mechanism to gather load informa-
tion, a distributed policy that decides that a process should be moved, and a mechanism
to effect the transfer. Migration has been demonstrated in a few Unix-based distributed
operating systems, such as Locus and MOS, and in communication-based distributed
operating systems, like Demos/MP.

4 THE COMMUNICATION-KERNEL APPROACH

An increasingly popular style of operating system follows a style that we will call the
communication-kernel approach. This approach is intended to apply to a fairly wide
variety of machines, including traditional mainframes, multiprocessors, multicomputers,
microcomputers, and even loosely coupled remotely connected machines. It is also
intended to apply to a wide variety of applications, including interactive multiprogram-
ming, databases, and distributed computation. Finally, it is intended to apply to a wide
variety of environments, including university research (which places a premium on easy
sharing and efficient text processing), the military (which emphasizes security considera-
tions), and embedded applications (computers inside other devices, like microwave
ovens).

The communication-kernel approach agrees with conventional operating system
design in that it constructs an operating system out of two pieces, thekernel and
processes. It differs in the division of labor between these components. In particular,
the kernel contains only those parts of the operating system that are both indispensible
and time-critical.

� Every application is assumed to need these services, so providing them once allows
for correct and consistent implementation. Basic communication is in this
category.

� Services that need to respond quickly to external events (represented by interrupts)
might be provided by the kernel for speed. The speed comes from the fact that

The communication-kernel approach 313

context switches from process to kernel and back are less expensive than a process
switch from one process to another.

A decision to embed a service in the kernel carries a price of inflexibility (there is no
alternative to using the provided service) and potential inadequacy (the provided service
may not fit the needs of all its customers). For this reason, shared resources are usually
managed not by the kernel but by separate processes. This design holds even for
hardware resources like magnetic disk.

Part of the goal of the communication-kernel approach is to keep the kernel as
small as possible. Therefore, it is restricted to provide mechanisms (and not policies) for
three purposes:

� Processes
� Main-store management
� Inter-process communication.

All matters of policy are relegated to processes.
Processes can be classified asservers or clients. A typical application program is

a client that makes calls on servers for file access and other forms of transput. A client
with regard to one conversation might well be a server with regard to another.

Whether a particular process is on one machine or another of a multicomputer is
usually immaterial, except for servers that need to access physical devices. Special
processes decide on which machine to place each new process and whether to migrate
the process during its execution. That is, the resources of time and space are managed by
servers written for that purpose.

4.1 Processes and threads

A process is an entity that corresponds to a virtual space. Creating a process involves
allocating the necessary amount of space and loading it with a program. Creating and
destroying processes is relatively expensive. The kernel needs to be involved only in the
establishment of mapping tables and process control blocks. The loader can be an ordi-
nary process that determines how much virtual space is needed and initializes it by read-
ing the appropriate load image.

The active entities that inhabit a process are calledthreads. When a process is
first created, a single thread begins to execute. New threads within a process can be
created either by internal events (an existing thread spawns a new one) or by external
events (a message arrives at the process that causes a new thread to be formed). Creating
and destroying threads is relatively inexpensive.

All threads within a process potentially share the entire virtual store of that pro-
cess. Sharing may be controlled, however, either by programming language support or,
more expensively, by kernel efforts.

The threads that inhabit a process may execute simultaneously, particularly on a
multiprocessor. In this case, the kernel might provide simple synchronization mechan-
isms (like semaphores) to allow the threads to protect shared data. However, experience
with the Lynx programming language has shown the benefits of preventing a thread from

314 Co-operating Processes Chapter 9

executing simultaneously with any other thread of the same process, that is, letting a
thread execute until it terminates, blocks for communication, or explicitly waits for a
condition. This restriction simplifies the construction of correct programs.

4.2 Communication

The principal points of differences among proponents of the communication-kernel
approach involve communication. All agree that the facility supported by the kernel
must be extremely efficient, because inter-process communication (including process
switching, not just context switching) is needed to accomplish all operating system func-
tions. It appears that the more facilities the kernel provides for communication, the less
efficient they become.

Communication is accomplished by messages sent from one process (actually,
from an active thread within the process) to another. Destinations for messages can be
specified by port names or port capabilities. For efficiency, input or bound ports are typi-
cally used. It is up to the kernel to take a port name or capability and discover where the
destination actually is. One technique is to keep a cache of recently used port names and
to broadcast searches when there is a cache miss. If processes can migrate, cache entries
can become obsolete. They are then treated ashints, not absolutes; the kernel can
always resort to broadcast if the hint turns out to be wrong. As an alternative to broad-
casting when a process must be located, each process can have an original home machine
whose kernel maintains accurate information about its current location. The location of
the home can be embedded in the process identifier.

The space of port names may be sparse to prevent one process from guessing a
name used by another. Many different names may refer to the same process; the process
may provide different levels of service to requests made on different identifiers.

A sending process directs its messages toentries within the program of the desti-
nation process. The sender of the message specifies which entry is meant either impli-
citly (by which port it sends the message to) or explicitly (as part of the message).
Entries may be invoked as remote procedures, in which casein parameters (in the Ada
sense) are passed by value in the first message, andout parameters are carried back to the
caller in a reply message. Remote procedure call has been championed by many as an
elegant way to structure distributed computation. However, some conversations do not
fit the procedure-call model.Examples are found in data retrieval, where one query
returns many responses, one at a time, and in graph algorithms, where more complex
activity takes place. For such cases, a simple message transfer, initiated either by the
sender or the receiver, is appropriate. Language-level support can be used to enforce
type security of messages without incurring significant run-time cost.

A thread canbind one of its input or bound ports to an entry, which causes incom-
ing messages to create new threads executing that entry. Alternatively, the thread can
explicitly receive messages. This decision is made dynamically by the destination thread.
For large messages, a facility to inspect a small request before deciding to engage in an
expensive transfer (in either direction) is useful.

The communication-kernel approach 315

4.3 Space management

The kernel provides support for the address-translation tables and allows privileged
processes (such as the storage manager) to modify those tables. One way to keep the
cost low is to map the translation tables themselves into the address space of the storage
managers. Address-translation faults are converted by the kernel into some form of call
on the appropriate storage manager. (Each machine might have its own.) This invoca-
tion can take the form of a return from a kernel call or a message that appears to come
from the faulting process.

Storage managers on different machines in a multicomputer may exchange infor-
mation about their allocation state to help make reasonable decisions about where to start
new processes. A single storage manager can control more than one machine, but if so, it
may be unacceptably slow in responding to faults. If the kernel is unable to grant the
necessary support to a remote storage manager, an intermediary process may reside on
the target machine and relay requests from a remote storage manager to the local kernel.

Storage managers can prevent overcommitment of main store by swapping
processes to backing store. A port bound to a swapped-out process is still usable, but
communication with such a process will be delayed until the process is swapped back in.
Such a communication event causes the relevant storage manager to be informed of the
problem.

4.4 Other services

Catalogs are used to find the port identifiers of servers. These catalogs are themselves
implemented as server processes. Newly created processes can establish their environ-
ment by knowing the process identifier of at least one catalog process.

File services may be provided by a hierarchy of processes. Many arrangements are
possible. One arrangement is to have three levels for file access:

(1) Directory server: Given the name of a file, this server returns the process
identifier of a file server that manages this file.

(2) File server: This server supports file open, read, write, and close.
(3) Disk server: This server supports seek, read block, write block.

Some applications, like database programs, will want to deal with the lowest level of the
hierarchy. There may be more than one server at each level, particularly if the tree of
files is distributed across many machines.

It is not easy to fit devices into the communication-kernel approach. Ideally, we
would like each device to be controlled by a server process. Unfortunately, the server
process might be too slow or too powerful.

� The kernel must transform each device-completion interrupt that arrives into a vir-
tual interrupt to the associated server process. This action requires a context
switch to the kernel, followed by a process switch to the server. The time required

316 Co-operating Processes Chapter 9

may be excessive.
� Either the server process must pass its device commands to the kernel to pass on to

the device, which is expensive, or it must have a means of submitting such requests
directly. If device registers are used, the server must have access to those registers,
but not to any others that do not belong to this device. If channel programs are
used, the server must be given the privilege to start channel commands. Most
current hardware is incapable of main-store mapping that has a fine enough grain
to allow access only to the registers of a single device. Similarly, it is impossible
to allow some channel commands and not others purely by hardware support.
Therefore, the server process will have privileges beyond what it needs, and a mal-
icious or erroneous server can do damage.

One challenge under the communication-kernel approach is to write managers that
can survive hardware failures. In a multicomputer, a single manager may be distributed
over several servers, which can replicate data about the state of the resource. A client
might make requests of any of the servers. The others need to be informed about
changes to shared data so that if a server should fail in the middle of a request, the surviv-
ing members of the team agree about the state of the resource. Such agreement requires
sophisticated communication protocols. A weaker form of reliability partitions the
resource into disjoint chunks and assigns a separate server to each chunk. For example, a
file hierarchy can be partitioned into subtrees, each of which is managed by a different
server. Failure of a disk (or its controlling computer) will affect only files stored there.
Unaffected files can still be accessed during the failure. A still weaker form of reliability
can be provided by acheckpoint operation, which copies the state of a process (includ-
ing its virtual space) either onto disk or to another process. If there is a failure, the opera-
tions of the failed process can be restarted from the checkpoint.

5 PERSPECTIVE

In this chapter, we have touched on a number of issues that are the subject of active
research. This research is the result of several sources of pressure.

� Computers always become saturated eventually.
� New technologies, particularly the Ethernet, have made it inexpensive to connect

computers together.
� Workstations that have extensive computing power are becoming relatively inex-

pensive.
� Communication is necessary for networks of computers to co-operate with each

other.
� Standards make it easier to expand facilities without requiring retraining of users

and reimplementation of programs.
� Some problems are too expensive to solve on standard machines. As computers

become faster, users’ expectations become greater, with the result that there will
always be a demand for increased computational power. The only hope is to build

Perspective 317

a multicomputer and distribute the problem.

One result of these pressures has been a trend toward operating systems whose processes
communicate with each other by standardprotocols. Local-area networksof machines
with such operating systems allow sharing of services. A version of this trend is for
fairly small and inexpensive individual machines, possibly even lacking backing store, to
be used as high-performance workstations. File and backing-store transfers are con-
ducted through the communication medium to file-server machines.

Personal computers are already showing the results of this trend. They have only a
few standard operating systems, such as CP/M, and most can connect to other computers
either by direct connections that obey a universal protocol at the host-to-line level (called
RS-232) or by phone connections that translate to RS-232. Workstation-class computers
are more expensive (as of 1987, they cost about $10,000), but they still cost much less
than the mainframe computers of the previous generation.

A second trend has been to connect local-area networks into continental networks
of computers to linkresearchers withcommon interests. These networks are used mostly
for correspondence betweenpeople, but also to support remote file transfer, remote
logon, user-information services, and distributed bulletin boards. The gateway between
the local-area network and the long-haul networks is any one machine in the local-area
network.

A third trend has been to design operating systems especially for multicomputers.
These operating systems provide only communication and scheduling services to their
processes. Files, other devices, and other services are provided through utility processes.
Policy decisions are also made by utility processes. These multicomputers are particu-
larly appropriate for large computations that will not fit on single machines because of
either space or time limitations. Multicomputer operating systems are the subject of
major research efforts both in industry and at universities. The communication-kernel
approach seems to be viable not only for multicomputers but also for a wide range of
other computer organizations.

6 FURTHER READING

There are several good introductions to inter-process communication methods. An excel-
lent survey of the facilities proposed in high-level languages for distributed computing
has been written by Scott (1984). The distinction among input, output, and free ports was
invented by Cashin (1980), who also surveyed various kinds of communication. Another
survey, by Andrews and Schneider (1983), discusses mechanisms for concurrency con-
trol as well as inter-process communication.

Tanenbaum’s excellent text (1981) is astandardreference fordetails on communi-
cation devices and protocols at various levels. A shorter form of the same treatment can
be found in his survey article (1981).

A number of distributed operating systems have been designed and built for a
variety of multiprocessors and multicomputers. Hydra was designed for C.mmp, a mul-
tiprocessor with 16 cpu’s with shared access to 16 main store modules (Wulfet al.,

318 Co-operating Processes Chapter 9

1974). StarOs (Jones, 1979) and Medusa (Ousterhout, 1980) were both designed for
Cm*, a more advanced multiprocessor in which each cpu has its own main store but can
access the main store of other cpu’s with some delay. Locus (Popeket al., 1981) and
MOS (Barak and Litman, 1982) are distributed versions of Unix that unify the file system
into one hierarchy, identically visible to all machines. Both have demonstrated process
migration.

Many research-orientedoperating systems display the communication-kernel
approach in some form, including Accent (Rashid and Robertson, 1981), Amoeba
(Tanenbaum and Mullender, 1981), Arachne (Solomon and Finkel, 1978), Charlotte
(Finkel et al., 1983), Clouds (Allchinet al., 1982), Demos/MP (Powell, 1977), Eden
(Lazowskaet al., 1981), Micros (Wittie and van Tilborg, 1980), SODS/OS (Sincoskie
and Farber, 1980), Thoth (Cheritonet al., 1979), and V kernel (Cheriton and
Zwaenepoel, 1983). A number of programming language efforts are also related to the
communication-kernel approach, particularly Argus (Liskov and Scheifler, 1983) and
Lynx (Scott, 1985). Lynx, for example, imposes Algol-like scope rules on the virtual
space shared by threads to help limit the chaos of shared space. It also provides inexpen-
sive type checking of all messages. Birrell has reported on efficient implementation of
remote procedure calls (1984).

Other operating systems have novel features. Soda (Kepecs and Solomon, 1984)
proposes an unusual communication mechanism that uses a global set of port numbers
and allows the initiator of communication to be either the reader or the writer. The
responder to the communication is allowed to see a small amount of data before deciding
whether to accept the communication. NonStop (Bartlett, 1981) is a multicomputer
operating system marketed by Tandem. It provides redundancy at a number of levels to
allow for graceful degradation when parts fail. A discussion of distributed operating sys-
tems in general can be found in the article by Tanenbaum and Van Renesse (1985).

7 EXERCISES

1. Thecobegin construct is a synchronization tool in the sense discussed in Chapter
8. Can it build the synchronization graph of Figure 8.1?

2. Show how to build the synchronization graph of Figure 8.1 using only Split and
Join.

3. In the scenario of Figure 9.7, why didA have to make its own port? Assuming that
the Finger port is a free port, why couldn’tA have received its answer on that port?

4. Demos/MP uses write capabilities to input ports for communication. The reader
for an input port (called theowner) is fixed for the life of the port, but writers can
give their capabilities away.
(a) What information should be stored by the port manager for the holder of a write
capability?
(b) What information should be stored by the port manager for the owner of that
port?
(c) In Figure 9.8, we used bound ports to show how the command interpreter can

Exercises 319

introduce the List and the Sort processes. How does this situation look in
Demos/MP?
(d) What information passes between the port managers for the three processes
when the command interpreter introduces List to Sort? (Assume that each of these
processes is on a different machine.)

5. What information would be useful in deciding if a process should be migrated in a
multicomputer operating system?

6. WorkEasy Computers is designing a new product in which individual machines are
used for predefined functions. For example, one machine is used as a file server,
another runs the text editor, and a third runs the compiler. A fourth machine is the
user’s interface into the network. Is this organization reasonable?

7. Bandwidth is the number of bits that can be sent from one machine to another
every second.Delay is the amount of time between when the writer submits the
WritePort call and the reader’s ReadPort call finishes. High bandwidth and low
delay are important for efficient communication. Suggest a multicomputer applica-
tion in which high bandwidth is more important than low delay. Suggest an appli-
cation where low delay is more important.

8. Instead of piping List and Sort, as in Figure 9.5, the standard output of List could
be directed to a file. After List is finished, Sort could be invoked with standard
input coming from the file. Which method is likely to execute faster?

9. Ports that buffer unread data require some policy for deciding when to block a
writer. For simplicity, assume a uniprocessor operating system. Assume that there
are currently ten ports and buffer space to hold 10,000 bytes. Suggest a blocking
strategy.

10. On multiprocessors, some buffer space may be used for messages that are in transit
— that is, messages written by a process on a second machine to be read by a pro-
cess on a third machine. The current machine happens to be in the communication
path and must therefore buffer messages. How does this situation change your
answer to exercise 9?

11. Charlotte uses capabilities to bound ports, for both reading and writing. Alink is a
pair of bound ports such that the reader of one is the writer of the other, and vice
versa. Capabilities are always transmitted as a pair and are never separated.
(a) What should the CreatePort call return?
(b) A client process has a link to a file server process. Suggest a protocol for open-
ing a file for sequential read or sequential write. Try to make file read and file
write use as few port read and port write operations as possible.

12. The Locus operating system has only one file hierarchy, which spans all the
machines in the multicomputer. Assuming that each file actually exists on the
secondary storage of only one machine and that each machine has secondary
storage, suggest an allocation design for associating files with machines.

13. Your answer to exercise 12 may suffer from a situation in which more files cannot
fit on one machine, but other machines still have plenty of file space. Suggest an
allocation design that lessens this problem. Do not allow individual files to cross
machine boundaries.

320 Co-operating Processes Chapter 9

14. We suggested that unread data might be kept in the virtual space of the writer until
they are read. For output ports and bound ports, this design makes sense. This
strategy is more difficult to implement in a multicomputer for input ports or free
ports. Discuss what the semantics of Read should be in those cases and what mes-
sages must be sent from one kernel to another to implement this design.

15. The text suggests that intermediary processes are useful for allowing a server on
one machine to interact with the kernel on another. A second use for intermediary
processes is to transmit messages between machines in a multicomputer. The
alternative is to let the kernel transmit such messages. What are the advantages of
each alternative?

16. The text suggests that if synchronous write on a port blocks the caller until a reply
comes, the caller should not be preempted for another process for a while. When
is this suggestion inapplicable?

Exercises 321

REFERENCES

J. E. ALLCHIN, M. S. MCKENDRY, AND W. C. THIBAULT, Clouds: A Testbed for Experimentation in
Distributed Systems, Working Paper 3: Status Report, Georgia Institute of Technology, Atlanta
(June 1982).

G. R. ANDREWS AND F. B. SCHNEIDER, ‘‘Concepts and Notations for Concurrent Programming,’’
ACM Computing Surveys 15(1) pp. 3-44 (March 1983).

R. ATKINSON AND C. HEWITT, ‘‘Synchronization and Proof Techniques for Serializers,’’IEEE
Transactions on Software Engineering 5(1) pp. 10-23 (January 1979).

O. BABAOGLU AND W. JOY, ‘‘Converting a Swap-based System to do Paging in an Architecture
Lacking Page-referenced Bits,’’Proceedings of the 8th Symposium on Operating Systems Princi-
ples, pp. 78-86 (December 1981).

A. B. BARAK AND A. LITMAN, MOSES: An Integrated Multicomputer Distributed Operating Sys-
tem, DCL TR 82-05, Department of Computer Science, Hebrew University of Jerusalem (Sep-
tember 1982).

J. BARTLETT, ‘‘A NonStop Kernel,’’ Proceedings of the 8th Symposium on Operating Systems
Principles, pp. 22-29 (December 1981).

L. L. BECK, System Software: An Introduction to Systems Programming, Reading, Mass.:
Addison-Wesley (1985).

L. A. BELADY, ‘‘A Study of Replacement Algorithms for a Virtual-storage Computer,’’IBM Sys-
tem Journal 5(2) pp. 78-101 (1966).

L. A. BELADY, R. A. NELSON, AND G. S. SHEDLER, ‘‘An Anomaly in Space-time Characteristics of
Certain Programs Running in a Paging Machine,’’CACM 12(6) pp. 349-353 (June 1969).

P. BERNSTEIN AND N. GOODMAN, ‘‘Concurrency Control in Distributed Database Systems,’’ACM
Computing Surveys 13(2) pp. 185-221 (June 1981).

A. D. BIRRELL AND R. M. NEEDHAM, ‘‘A Universal File Server,’’IEEE Transactions on Software
Engineering SE-6(5) pp. 450-453 (September 1980).

A. D. BIRRELL AND B. J. NELSON, ‘‘Implementing Remote Procedure Calls,’’ACM Transactions on
Computer Systems 2(1) pp. 39-59 (February 1984).

322

T. BLOOM, ‘‘Evaluating Synchronization Mechanisms,’’Proceedings of the 7th Symposium on
Operating Systems Principles, pp. 24-32 (December 1979).

P. BRINCH HANSEN, Operating System Principles, Englewood Cliffs, N.J.: Prentice-Hall (1973).
P. BRINCH HANSEN, The Design of Edison, Computer Science Department, University of Southern

California, Los Angeles (1980).
P. CALINGAERT, Operating System Elements: A User Perspective, Englewood Cliffs, N.J.:

Prentice-Hall (1982).
R. H. CAMPBELL AND A. N. HABERMANN, ‘‘The Specification of Process Synchronization by Path

Expressions,’’ pp. 89-102 inOperating Systems, ed. E. Gelenbe and C. Kaiser, Berlin: Springer-
Verlag (1974).

R. W. CARR AND J. L. HENNESSY, ‘‘WSCLOCK: A Simple and Effective Algorithm for Virtual
Memory Management,’’Proceedings of the 8th Symposium on Operating Systems Principles,
pp. 87-95 (December 1981).

P. M. CASHIN, Inter-process Communication, Technical Report 8005014, Bell-Northern Research
(June 1980).

D. R. CHERITON, M. A. MALCOLM, L. S. MELEN, AND G. R. SAGER, ‘‘Thoth: A Portable Real-time
Operating System,’’CACM 22(2) pp. 105-115 (February 1979).

D. R. CHERITON AND W. Z. ZWAENEPOEL, ‘‘The Distributed V Kernel and its Performance for Disk-
less Workstations,’’Proceedings of the 9th Symposium on Operating Systems Principles, pp.
129-140 (October 1983).

E. G. COFFMAN AND L. KLEINROCK, ‘‘Computer Scheduling Methods and their Countermeasures,’’
Proceedings of the AFIPS Spring Joint Computer Conference, pp. 11-21 (1968).

E. G. COFFMAN, M. J. ELPHICK, AND A. SHOSHANI, ‘‘System Deadlocks,’’Computing Surveys
3(2) pp. 67-78 (June 1971).

D. E. COMER, Operating System Design: The Xinu Approach, Englewood Cliffs, N.J.: Prentice-
Hall (1984).

D. E. COMER, Operating system design: Internetworking with Xinu, Englewood Cliffs, N.J.:
Prentice-Hall (1987).

F. J. CORBATO ET AL., ‘‘An Experimental Time-sharing System,’’Proceedings of the AFIPS Fall
Joint Computer Conference, pp. 335-344 (May 1962).

P. COURTOIS AND D. PARNAS, ‘‘Concurrent Control with Readers and Writers,’’CACM 14(10) pp.
667-668 (October 1971).

H. M. DEITEL, An Introduction to Operating Systems, Reading, Mass.: Addison-Wesley (1983).
P. J. DENNING, ‘‘Virtual Memory,’’ Computing Surveys 2(3) pp. 153-188 (September 1970).
P. J. DENNING AND H. S. STONE, ‘‘An Exchange of Views on Operating Systems Courses,’’Operat-

ing Systems Review 14(4) pp. 71-82 (October 1980).
P. DEWAN, Automatic Generation of User Interfaces, Ph.D. thesis, Technical Report 666, Univer-

sity of Wisconsin−Madison (August 1986).
W. DIFFIE AND M. E. HELLMAN, ‘‘New Directions in Cryptography,’’IEEE Transactions on Infor-

mation Theory IT-22(6) pp. 644-654 (November 1976).
E. W. DIJKSTRA, ‘‘Solution of a Problem in Concurrent Programming Control,’’CACM 8(9) p. 569

(September 1965).
E. W. DIJKSTRA, ‘‘Cooperating Sequential Processes,’’ pp. 103-110 inProgramming Languages,

ed. F. Genuys, Orlando, Fla.: Academic Press (1968).
E. W. DIJKSTRA, ‘‘Hierarchical Ordering of Sequential Processes,’’Acta Informatica 2(1) pp. 115-

138 (1971).
C. M. ELLISON, ‘‘The Utah TENEX Scheduler,’’Proceedings of the IEEE 63(6) pp. 940-945 (June

1975).

References 323

R. FINKEL, M. SOLOMON, D. DEWITT, AND L. LANDWEBER, The Charlotte Distributed Operating
System: Part IV of the First Report on the Crystal Project, Computer Sciences Technical Report
502, University of Wisconsin—Madison (July 1983).

C. N. FISCHER ET AL., ‘‘The POE Language-Based Editor Project,’’ACM Sigsoft/Sigplan Sympo-
sium on Practical Software Development Environments, (April 1984).

M. FRIDRICH AND W. OLDER, ‘‘The Felix File Server,’’ Proceedings of the 8th Symposium on
Operating Systems Principles, pp. 37-44 (December 1981).

S. H. FULLER, ‘‘Minimal Total Processing Time Drum and Disk Scheduling Disciplines,’’CACM
17(7) pp. 376-381 (July 1974).

D. K. GIFFORD, ‘‘Cryptographic Sealing for Information Secrecy and Authentication,’’CACM
25(4) pp. 274-286 (April 1982).

R. P. GOLDBERG,, ‘‘Survey of Virtual Machine Research,’’Computer, (June 1974).
M. GOOD, ‘‘Etude and the Folklore of User Interface Design,’’Proceedings of the ACM SIGPLAN

SIGOA Symposium on Text Manipulation, SIGPLAN Notices 16(6) pp. 34-43 (June 1981).
J. GRAY, ‘‘Notes on Database Operating Systems,’’ inOperating systems: An advanced course,

Berlin: Springer-Verlag (1979).
A. N. HABERMANN, Introduction to Operating System Design, Chicago: Science Research Associ-

ates, Inc. (1976).
B. HADDON, ‘‘Nested Monitor Calls,’’Operating systems review 11(10) pp. 18-23 (October 1977).
P. G. HEBALKAR, ‘‘Coordinated Sharing of Resources in Asynchronous Systems,’’Record of the

Project MAC Conference on Concurrent Systems and Parallel Computation, pp. 151-168 (June
1970).

M. C. HEMINWAY AND ED., Datapro 70: The EDP Buyer’s Bible, Delvan, N.J.: Datapro Research
Corp. (1986).

C. A. R. HOARE, ‘‘Towards a Theory of Parallel Programming,’’ pp. 61-71 inOperating Systems
Techniques, ed. C. A. R. Hoare and R. H. Perrott, , London: Academic Press (1972).

C. A. R. HOARE, ‘‘Monitors: An Operating System Structuring Concept,’’CACM 17(10) pp. 549-
557 (October 1974).

R. C. HOLT, ‘‘Comments on Prevention of System Deadlocks,’’CACM 14(1) pp. 36-38 (January
1971).

R. C. HOLT, ‘‘Some Deadlock Properties of Computer Systems,’’Computing Surveys 4(3) pp.
179-196 (September 1972).

F. HORN AND M. HONDA, Personal Communication (1977).
J. H. HOWARD, ‘‘Signaling in Monitors,’’ Proceedings of the 2nd International Conference on

Software Engineering, pp. 47-52 (October 1976).
K. JENSEN ANDN. WIRTH, ‘‘Pascal: User Manual and Report,’’Lecture Notes in Computer Science

18 Berlin: Springer-Verlag, (1974).
A. K. JONES ET AL., ‘‘StarOS: A Multiprocessor Operating System for the Support of Task Forces,’’

Proceedings of the 7th Symposium on Operating Systems Principles, pp. 117-127 (December
1979).

L. J. KENAH AND S. F. BATE, VAX/VMS Internals and Data Structures, Digital Press (1984).
J. H. KEPECS AND M. H. SOLOMON, ‘‘SODA: A Simplified Operating System for Distributed

Applications,’’ Proceedings of the Third Annual ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing, (August 1984).

B. W. KERNIGHAN AND R. PIKE, The Unix Programming Environment, Englewood Cliffs, N.J.:
Prentice-Hall (1984).

L. KLEINROCK, Queueing Systems, Vol. 2: Computer Applications, New York: Wiley (1976).

324 References

D. E. KNUTH, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Reading,
Mass.: Addison-Wesley (2nd ed.) (1973).

D. E. KNUTH, The TeXBook, Reading, Mass.: Addison-Wesley (1984).
L. LAMPORT, ‘‘Concurrent Reading and Writing,’’CACM 20(11) pp. 806-811 (November 1977).
B. W. LAMPSON AND D. D. REDELL, ‘‘Experience with Processes and Monitors in Mesa,’’CACM

23(2) pp. 105-117 (February 1980).
K. A. LANTZ AND R. F. RASHID, ‘‘Virtual Terminal Management in a Multiple Process Environ-

ment,’’ Proceedings of the 7th Symposium on Operating Systems Principles, pp. 86-97
(December 1979).

S. LAUESEN, ‘‘Job Scheduling Guaranteeing Reasonable Turn-around Times,’’Acta Informatica
2(1) pp. 1-11 (1973).

E. D. LAZOWSKA ET AL., ‘‘The Architecture of the Eden System,’’Proceedings of the 8th Sympo-
sium on Operating Systems Principles, pp. 148-159 (December 1981).

E. D. LAZOWSKA ET AL., Quantitative System Performance, (et al.), Englewood Cliffs, N.J.:
Prentice-Hall (1984).

R. LEVIN ET AL., ‘‘Policy/mechanism Separation in Hydra,’’Proceedings of the 6th Symposium on
Operating Systems Principles, pp. 132-140 (1977).

B. LISKOV AND R. SCHEIFLER, ‘‘Guardians and Actions: Linguistic Support for Robust, Distributed
Programs,’’ACM TOPLAS 5(3) pp. 381-404 (July 1983).

D. C. LITTLE, ‘‘A Proof of the Queueing Formula:L =λW ,’’ Operations Research 9 pp. 383-387
(May 1961).

H. MADDURI AND R. FINKEL, ‘‘Extension of the Banker’s Algorithm for Resource Allocation in a
Distributed Operating System,’’Information Processing Letters 19(1) pp. 1-8 (July 1984).

H. MADDURI AND R. FINKEL, A Note on Starvation Control Policies, Computer Sciences Technical
Report 564, University of Wisconsin−Madison (November 1984).

S. E. MADNICK AND J. J. DONOVAN, Operating Systems, New York: McGraw-Hill (1972).
M. MAEKAWA, A. E. OLDEHOEFT, AND R. R. OLDEHOEFT, Operating Systems: Advanced concepts,

Benjamin-Cummings (1987).
B. H. MARGOLIN, R. P. PARMELEE, AND M. SCHATZOFF, ‘‘Analysis of Free-storage Algorithms,’’

IBM System Journal 10(4) p. 283 (1971).
T. MASUDA, ‘‘Effect of Program Localities on Memory management strategies,’’Proceedings of

the 6th Symposium on Operating Systems Principles, pp. 117-124 (November 1977).
N. MEYROWITZ AND M. MOSER, ‘‘Bruwin: An Adaptable Design Strategy for Window

Manger/Virtual Terminal Systems,’’Proceedings of the 8th Symposium on Operating System
Principles, pp. 180-189 (December 1981).

T. MINOURA, ‘‘Deadlock Avoidance Revisited,’’Journal of the ACM 29(4) pp. 1023-1048
(October 1982).

J. G. MITCHELL AND J. DION, ‘‘A Comparison of Two Network-based File Servers,’’CACM
25(4) pp. 233-245 (April 1982).

R. M. NEEDHAM AND A. D. BIRRELL, ‘‘The CAP Filing System,’’Proceedings of the 6th Sympo-
sium on Operating Systems Principles, pp. 11-16 (November 1977).

R. M. NEEDHAM AND R. D. H. WALKER, ‘‘The Cambridge CAP Computer and its Protection Sys-
tem,’’ Proceedings of the 6th Symposium on Operating Systems Principles, pp. 1-10 (November
1977).

J. K. OUSTERHOUT, D. A. SCELZA, AND S. S. PRADEEP, ‘‘Medusa: An Experiment in Distributed
Operating System Structure,’’CACM 23(2) pp. 92-105 (February 1980).

D. L. PARNAS AND A. N. HABERMANN, ‘‘Comment on Deadlock Prevention (with reply by R.C.
Holt),’’ CACM 15(9) pp. 840-841 (September 1972).

References 325

G. L. PETERSON, ‘‘Myths about the Mutual Exclusion Problem,’’Information Processing Letters
12(3) pp. 115-116 (June 1981).

J. L. PETERSON AND A. SILBERSCHATZ, Operating System Concepts, Reading, Mass.: Addison-
Wesley (2nd ed.) (1985).

F. POLLACK, K. KAHN, AND R. WILKINSON, ‘‘The iMAX-432 Object Filing System,’’Proceedings
of the 8th Symposium on Operating Systems Principles, pp. 137-147 (December 1981).

G. J. POPEK AND C. S. KLINE, ‘‘The PDP-11 Virtual Machine Architecture, A Case Study,’’
Proceedings of the 5th Symposium on Operating Systems Principles, (November 1975).

G. J. POPEK ET AL., ‘‘LOCUS: A Network Transparent, High Reliability Distributed Sytem,’’
Proceedings of the 8th Symposium on Operating Systems Principles, pp. 169-177 (December
1981).

M. L. POWELL, ‘‘The Demos File System,’’Proceedings of the 6th Symposium on Operating Sys-
tems Principles, pp. 33-42 (December 1977).

R. RASHID AND G. ROBERTSON, ‘‘Accent: A Communication Oriented Network Operating System
Kernel,’’ Proceedings of the 8th Symposium on Operating Systems Principles, pp. 64-75
(December 1981).

D. D. REDELL ET AL., ‘‘Pilot: An Operating System for a Personal Computer,’’CACM 23(2) pp.
81-92 (February 1980).

D. P. REED AND R. K. KANODIA, ‘‘Synchronization with Eventcounts and Sequencers,’’CACM
22(2) pp. 115-123 (February 1979).

P. ROBERT AND J. P. VERJUS, ‘‘Toward Autonomous Descriptions of Synchronization Modules,’’
pp. 981-986 inInformation Processing 77, ed. B. Gilchrist, (proceedings of the 1977 IFIP
congress, Toronto, August 1977) New York: Elsevier−North Holland (1977).

D. E. ROSSI AND R. O. FONTAO, ‘‘A Parallel Algorithm for Deadlock-free Resource Allocation,’’
Revista Telegrafica Electronica (Argentina)., (824) pp. 1062-1068 (November 1981).

M. SATYANARAYANAN , ‘‘A Study of File Sizes and Functional Lifetimes,’’Proceedings of the 8th
Symposium on Operating Systems Principles, pp. 96-108 (December 1981).

C. H. SAUER AND K. M. CHANDY, Computer Systems Performance Modeling, Englewood Cliffs,
N.J.: Prentice-Hall (1981).

M. L. SCOTT, A Framework for the Evaluation of High-Level Languages for Distributed Comput-
ing, Computer Sciences Technical Report 563, University of Wisconsin−Madison (October
1984).

M. L. SCOTT, Design and Implementation of a Distributed Systems Language, Ph. D. Thesis,
Technical Report 596, University of Wisconsin−Madison (May 1985).

A. C. SHAW, The Logical Design of Operating Systems, Englewood Cliffs, N.J.: Prentice-Hall
(1974).

B. SHNEIDERMAN, ‘‘Response Time and Display Rate in Human Performance with Computers,’’
ACM Computing Surveys 16(3) pp. 265-285 (September 1984).

J. E. SHORE, ‘‘On the External Storage Fragmentation Produced by First Fit and Best Fit Allocation
Policies,’’ CACM 18(8) p. 433 (1975).

A. SHOSHANI AND E. G. COFFMAN, ‘‘Sequencing Tasks in Multiprocess Systems to Avoid
Deadlocks,’’ IEEE Conference record of the 11th Annual Symposium on Switching and Auto-
mata Theory, pp. 225-235 (October 1970).

W. D. SINCOSKIE AND D. J. FARBER, ‘‘SODS/OS: A Distributed Operating System for the IBM
Series/1,’’Operating Systems Review 14(3) pp. 46-54 (July 1980).

A. J. SMITH, ‘‘Bibliography on Paging and Related Topics,’’Operating Systems Review 12(4) pp.
39-56 (October 1978).

M. H. SOLOMON AND R. A. FINKEL, ‘‘ROSCOE: A Multi-Microcomputer Operating System,’’
Proceedings of the 2nd Rocky Mountain Symposium on Microcomputers, pp. 291-310 (August
1978).

326 References

M. STONEBRAKER, ‘‘Operating System Support for Database Management,’’CACM 24(7) pp. 412-
418 (July 1981).

D. SWINEHART, G. MCDANIEL, AND D. BOGGS, ‘‘WFS: A Simple Shared File System for a Distri-
buted Environment,’’Proceedings of the 7th Symposium on Operating Systems Principles, pp.
9-17 (December 1979).

A. S. TANENBAUM AND S. J. MULLENDER, ‘‘An Overview of the Amoeba Distributed Operating
System,’’ACM Operating Systems Review 15(3) pp. 51-64 (July 1981).

A. S. TANENBAUM, Computer Networks, Englewood Cliffs, N.J.: Prentice-Hall (1981).
A. S. TANENBAUM, ‘‘Network Protocols,’’ACM Computing Surveys 13(4) pp. 453-489 (December

1981).
A. S. TANENBAUM AND R. VAN RENESSE, ‘‘Distributed Operating Systems,’’Computing Surveys

17(4) pp. 419-470 (December 1985).
A. S. TANENBAUM, Operating Systems: Design and Implementation, Englewood Cliffs, N.J.:

Prentice-Hall (1987).
T. TEITELBAUM, T. REPS, AND S. HORWITZ, ‘‘The Why and Wherefore of the Cornell Program Syn-

thesizer,’’Sigplan Notices 16(6) pp. 8-16 (June 1981).
T. J. TEOREY AND T. B. PINKERTON, ‘‘A Comparative Analysis of Disk-Scheduling Policies,’’

CACM 15(3) pp. 177-184 (March 1972).
R. W. TURNER, Operating systems: Design and implementations, Macmillan (1986).
N. WIRTH, ‘‘Modula: a Language for Modular Multiprogramming,’’Software—Practice and

Experience 7 pp. 3-35 (1977).
L. D. WITTIE AND A. M. VAN TILBORG, ‘‘MICROS, a Distributed Operating System For

MICRONET, a Reconfigurable Network Computer,’’IEEE Transactions on Computers C-
29(12) pp. 1133-44 (December 1980).

W. WULF ET AL., ‘‘HYDRA: The Kernel of a Multiprocessor Operating System,’’CACM 17(6) pp.
337-345 (June 1974).

References 327

GLOSSARY

Many standard English words are used in a technical sense in this book. Careful and
consistent use of these terms is a worthwhile habit to cultivate. Alternative expressions
that you might find in the literature are also given here. This glossary should be taken as
a guide to the sense in which I have used these terms rather than as a prescription for
their proper use. Since there are many different kinds of operating systems, not all of
these terms have meaning in all implementations.

Abort. To announce that a transaction has failed.

Absolute file name. A file name that indicates where a file lies with respect to the root
of the file structure.

Absolute. (1) With respect to astandardreferencepoint. For example, anabsolute file
name is given as a path from the root of the file tree. (SeeRelative.) (2) Certain to be
true and up to date. For example, each disk block can include absolute information iden-
tifying the file to which it belongs. (SeeHint.)

Abstraction. Higher-level resources created out of lower-level ones. Details of the
lower-level structures are hidden, and higher-level structures are introduced. (SeePhysi-
cal andVirtual.)

Access control. A policy that determines the forms of access that subjects may make
over objects.

Access list. A list of all the subjects that can access a given object and the privileges of
each one.

Access matrix. A matrix with one row for each subject and one column for each object
that shows the privileges each subject has over each object.

Access mode. The manner in which a subject accesses an object, such as reading as
opposed to writing.

328

Access right. Permission for a subject to access an object via a particular access mode.

Activate. A line of text interactively entered into the computer is buffered by the operat-
ing system until the line has been activated. A typical line activator is the carriage return.

Activity. An executing entity, whether a process, a kernel task, an interrupt-driven pro-
cedure, or a DMA transfer.

Address translation. Converting a virtual address into a physical address. This opera-
tion is performed by hardware for the sake of efficiency.

Advised paging. A situation in which processes inform the storage manager that a page
should be swapped in or out.

Alias. An alternative file name. Also called alink.

Aligned. Starting on a particular boundary.

Allocation state. The number of resources held and claimed by each process and the
number of resources not allocated to any process.

Analysis. Mathematical formulation of a set of interrelated objects and derivation of
their collective behavior.

Anomaly. A situation in page replacement where increasing the number of page frames
increases the number of faults.

Arbitration. Selection between simultaneous requests to decide which to honor first.

Archive. (1) A place where data may be stored, typically slow to access but large in
capacity. (2) Long-term storage of large data files, typically on magnetic tape. (3) To
transfer data from a cache to an archive. (SeeCache.)

Arrival. When a process appears in the view of the short-term scheduler, either because
it is a new process, because it has finished waiting for transput or some other resource, or
because the medium-term scheduler has favored it. (Opposite ofDeparture.)

Arrival rate. The rate at which new processes arrive in the ready queue, usually
represented byα. The expected time between arrivals is 1/ α.

Asynchronous communication. The requesting process is not blocked while a send or
receive operation undertaken on its request is completed. Instead, it discovers comple-
tion by waiting, polling, or virtual interrupt. (Opposite ofSynchronous communication.)

Asynchronous transput. The requesting process is not blocked while transput under-
taken on its request is completed. Instead, it discovers completion by waiting, polling, or
virtual interrupt. (Opposite ofSynchronous transput.)

Atomic transaction. A set of operations on files that behave as if they all happened at
the same time or, in case of failure, as if none of them has happened at all.

Authentication. Discovering the identity of a subject, either to find out whether that
subject has access rights over some object or to discover which subject created a particu-
lar object.

Automatic chaining. Invoking a frequently needed sequence of programs with one
command.

Glossary 329

Backing store. The large storage area used for swapping space. Backing store is typi-
cally disk or drum.

Background. A non-interactive process that executes at the same time as other
processes owned by the same user but is not waited for by the command interpreter.
(Opposite ofForeground.)

Backup file. A file that duplicates the contents of another file to protect against acciden-
tal deletion of information.

Bandwidth. The amount of data a communication line can carry every second.

Base. (1) A hardware register that indicates the physical address where a segment starts.
(2) A program-accessible register thatis used as part of effective address calculation for
instructions.

Batch. A style of computer use in which programs are invoked and input is presented to
them in a non-interactive way.

Baud. The bandwidth of a communication line, measured in the number of transitions
per second.

Beautification Principle. An operating system is a set of algorithms that hide the details
of the hardware and provide a more pleasant environment.

Best fit. A space-allocation policy that accepts the region of space that comes closest to
meeting the space requirements. (SeeFirst fit.)

Binding. (1) Converting an abstract representation into a concrete one. (2) Associating
a logical name with a physical name. (3) Associating an input or bound port with an
entry.

Bit map. A mechanism for representing chunks of free and used space by associating
one bit with each chunk.

Bit mapped display. A kind of display device where each dot on the display is con-
trolled by a bit in main store.

Bit-oriented. A protocol that sends any number of bits, even if the number does not fit
exactly into bytes. (Opposite ofCharacter-oriented.)

Bit stuffing. Insertion of extra bits in a message to prevent the header bit pattern from
being sent accidentally.

Block. (1) The fundamental chunk size for data stored on a disk. (2) To place a process
in a wait list. Such a process is said to beblocked.

Block device. A device such as the disk that transfers data in fixed-size blocks.

Bottleneck. The limiting resource.

Boundary tag. A mechanism for delimiting blocks of free and used space that allows
freed blocks to be coalesced with neighbors and allows free space to be linked together.

Bounded. A resource class is bounded if the number of elements in the class is limited.

Bounded buffer. A data object shared between producers and consumers of data. (See
Producer-consumer.)

330 Glossary

Bound port. A communication port with one writer and one reader.

Bounds. A hardware register indicating the length of a segment.

Broadcast. A situation in which many recipients can see the same message.

Buffer. A region in main store used to hold data that are about to be output to a device
or that have recently come in from a device.

Buffer Principle. The purpose of a buffer pool is to smooth out short-term variations in
speeds between consumers and producers. This smoothing prevents needless blocking.

Bulletin board. A program that accepts notices and distributes them to interested users.

Busy waiting. Polling in a tight loop.

Byte stuffing. Use of an escape convention to avoid transmitting a header byte by
accident.

Cache. (1) A place where data can be accessed quickly. (2) To transfer data from an
archive to a cache. (SeeArchive.)

Cache hit. The situation in which a cache is accessed and is found to contain the desired
information.

Cache miss. The situation in which a cache is accessed but does not contain the desired
information.

Cache Principle. The more frequently data are accessed, the faster the access should be.

Capability. An entity owned by a process that gives the process certain rights to access
a particular object.

Capability list. A list of all the capabilities owned by a process.

Central processing unit (cpu). The part of the hardware of a computer that executes
machine instructions. It communicates with main store and with devices.

Chaining. SeeAutomatic chaining andCommand chaining.

Channel. A subsidiary computer whose programs, calledchannel programs, are kept in
main store. Channels govern transput for a set of devices.

Characteristic number. The area under a curve in a fault-rate graph.

Character-oriented. A protocol that sends messages 1 character (typically 8 bits) at a
time. (Opposite ofBit-oriented.)

Cheap-process philosophy. Using a new process for each stage in a computation.

Checkpoint. A copy made of a process so that it can be restarted later from that same
point if there is a hardware failure that prevents it from completing normally.

Checksum. A bit pattern derived from a chunk of data, usually by exclusive-or opera-
tions, appended to that chunk so that errors in storing or transmitting that chunk of data
can be detected.

Child. A subnode in a tree, whether the tree is composed of files, processes, or other
entities. (Opposite ofParent.)

Glossary 331

Ciphertext. The result of encrypting data.

Circular buffer pool. A set of data buffers used for transput. As soon as one is finished,
the next one in circular order may be used.

Claim. In the banker’s algorithm of resource allocation, a limit specified by each process
that restricts the number of resources it can request.

Cleartext. Data that have not been encrypted or that have been restored from encrypted
form.

Clock. A device that interrupts at the end of an interval. Also called atimer.

Close. To finalize data structures or hardware when a data object or device is no longer
to be used.

Clustering. (1) In paging, bringing in a set of pages adjacent in virtual space when any
one of them needs to be swapped in. (2) In physical file layout, placing the blocks that
represent a file on the same cylinder or within a small contiguous group of cylinders.

Cold start. (1) In simulations, beginning measurements from a bare initial state. For
example, cold-startpage-replacement analysiscounts page faults required to start up a
process. (2) In initializing operating systems, a cold start means that file storage is not
formatted or may be corrupted and must be checked.

Command. (1) An instruction in a channel program, typically specifying the transput of
a single block of information between main store and some particular device. (2) An
interactive request given by a user to a program, particularly to the command interpreter
of the operating system.

Command chaining. Allowing a channel program to contain more than one command.

Command interpreter. The software (part of either the kernel or a utility process) that
interprets requests from the user. Also calledmonitor or shell.

Command language. A language the user employs to describe what programs are to be
run and what their environment should be. Also calledjob-control language.

Command script. A command-language program given as a single interactive com-
mand to a command interpreter.

Commit. The point in a transaction after which the transaction is guaranteed to ter-
minate without failing.

Communication-kernel approach. A design of operating system in which a small ker-
nel provides mechanisms for processes to communicate with each other, but most policy
decisions are outside the kernel.

Communication line. A device used for transferring information between computers or
between a computer and a user.

Component. A file name is divided into components, each of which may follow a con-
vention that indicates what the file contains.

Composite address-translation table. An address-translation table that composes the
mappings specified by two or more address-translation tables at adjacent levels of a
virtual-machine hierarchy.

332 Glossary

Compute-bound. A process is compute bound if its running time depends mostly on the
speed of the central processing unit, not on the speed of the transput devices. (Opposite
of Transput-bound.)

Concurrency control. Synchronization and mutual exclusion to assure that activities
that share data have predictable behavior.

Conditional critical region. A programming language construct used to enforce syn-
chronization and mutual exclusion. (SeeSynchronization, 2, andMutual exclusion.)

Conflict. Two regions conflict if execution of one must exclude execution of the other.

Conservative. A resource allocation policy is conservative if it avoids allocating
resources unless stringent requirements are met. These requirements are intended to
prevent deadlock and starvation. (Opposite ofLiberal.)

Context block. The data used by the operating system to describe each process. The
context block typically includes information about current use of main and backing store,
the relationship between this process and others, the status of the process, and accounting
information.

Context switch. The events involved in switching the hardware between execution of a
process and execution of the kernel or in switching in the other direction. Switching
from the kernel to the process is also calleddispatching. (SeeProcess switch.)

Controller. Hardware that connects a device either to the cpu or to a channel. The con-
troller keeps track of the status of its devices and governs their actions.

Convoy phenomenon. A situation caused by long busy waiting in which many activities
end up waiting for the same region and then proceed as a group through subsequent
regions.

Copy on write. A form of lazy evaluation in which a segment is shared by two
processes until either one tries to modify its data, at which point a separate copy is made.

Crash. (1) A calamity in which a disk head touches the disk surface and destroys it. (2)
An unplanned halt in the operating system.

Critical region. A programming language construct used to enforce mutual exclusion.
(SeeMutual exclusion.)

Crowd monitor. An extension to a monitor that distinguishes guard procedures from
ordinary procedures within the monitor and imposes run-time restrictions on when ordi-
nary procedures may be invoked. (SeeMonitor.)

Cursor. A visual indicator of the current location of interest on a display.

Customization. Modifying the interface between the operating system and the user
according to the personal desires of the user. Line-editing characters, command syntax,
and default settings for programs are useful to customize.

Cylinder. A collection of tracks on a disk pack that can be simultaneously accessed by
the read/write heads on the different disk surfaces.

Data abstraction. A programming-language tool that separates operations on data from
their implementation, thus hiding details of lower-level structures and introducing new
facilities. (SeeAbstraction.)

Glossary 333

Database. A collection of structured, interrelated data, usually managed by utility pro-
grams that perform queries and updates.

Data chaining. A channel’s ability to gather data from different places in main store or
to scatter data to different places in main store.

Debugging. Discovering the sources of errors in a program and fixing them.

Decryption. A transformation used to convert ciphertext back to the original cleartext.

Deadlock. A situation in which each process in a cycle is waiting for resources held by
the next process in the cycle. Also calleddeadly embrace. (SeeLivelock and Starva-
tion.)

Deadlock detection. Noticing deadlock situations when they arise instead of applying
deadlock prevention.

Deadlock-free. A resource allocation stateis deadlock-free if theprocesses form a
sequence, each element of which might finish if all the previous ones do.

Deadlock-free sequence. A sequence of processes used to show that a resource alloca-
tion state is deadlock-free.

Deadlock prevention. Avoiding a deadlock situation by using an appropriate resource
allocation policy.

Deadlock recovery. Terminating one or more members of a deadlock for the good of
the community.

Default setting. An assumption that may be overridden if necessary.

Delay. The amount of time between the moment a writer sends information on a com-
munication line and the moment a reader gets that information.

Delete. To remove a file from secondary store. Also calledremove or destroy. (See
Partial deletion.)

Delimiting. A property of a communication link that data written to the link are
separated into discrete messages.

Demand paging. A page is brought in when a page fault requires it.

Departure. When a process disappears from the view of the short-term scheduler, either
because it has terminated, because it must wait for transput or some other resource, or
because the medium-term scheduler is discriminating against it. (Opposite ofArrival.)

Descriptor. A small number given by the kernel to a process to allow it to refer to an
opened resource.

Device. A piece of hardware connected to the computer. Devices are principally used
for transput.

Device descriptor. A small integer returned by the kernel when a device is opened by a
process. The process then uses the descriptor to refer to the device in other service calls.

Device driver. A device-specific program in the kernel to control a particular type of
device.

334 Glossary

Device interface. The interface between the kernel and devices, consisting of control
requests and interrupts.

Device register. A means of communication between devices and the cpu used to carry
data, instructions from the cpu to the device, and the status of the device.

Difference encoding. A data compression technique that converts values into differ-
ences between one value and the next.

Direct access. A file access method in which the read/write mark can be positioned
explicitly. Also calledrandom access.

Direct memory access (DMA). A hardware technique that allows a device to transfer
large quantities of data to or from main store.

Directory. A list of pairs that can be searched by the first element, called thekey, to
derive the second.

Dirty field. A field in the translation table set by the hardware when a page or segment is
written into.

Discrete. A resource is discrete if it can be granted entirely or not at all but not partially.

Disk. A device used for secondary and backing store.

Disk descriptor. Information recorded in a well-known place on a disk that describes
the layout of data on the disk.

Disk-head scheduling. Ordering the outstanding disk-access requests to minimize seek
latency.

Disk pack. The part of the disk on which information is stored.

Distributed computation. Co-ordinated work on several computers simultaneously.
(SeeMulticomputer andMultiprocessor.)

Driver. SeeDevice driver.

Dump. (1) A file dump is a backup copy of one or more files to protect against acciden-
tal loss. (2) A main-store dump is a file copy of the address space of a process that has
encountered a run-time error.

Dynamic. Something that changes over time. For example, the number of processes
competing for service is a dynamic property of an operating system.

Eager evaluation. Doing work that may prove useful to save time later if the work is
required. (Example:Read-ahead. Opposite ofLazy evaluation.)

Echo. Repeating information that has been heard back to the sender is called echoing.
In particular, the terminal driver of an operating system may echo all characters typed
into keyboards back out to the associated display.

Editing. Entry or modification of textual information, usually interactive. Files are
edited with the assistance of programs calledtext editors. Command lines and other lines
input to programs may be edited with the direct assistance of aline editor, which is part
of the terminal driver in the operating system.

Glossary 335

Encryption. A data transformation intended to provide secrecy (and possibly authenti-
cation).

Entry. In the communication-kernel approach, the recipient of a message, much like a
procedure.

Error-correcting code. A data encoding method that is capable of detecting and
correcting some recording or transmission errors.

Escape convention. A character that means that the next character is to be treated as
data, not as a control character.

Essential utility. A part of the operating system that every user must use but which does
not need special privileges. (SeeOptional utility andKernel.)

Event count. A counter that is used for synchronization without mutual exclusion. Its
operations are Read, Advance, and Await.

Execution. When a process is running, we say it is in the execution phase, as distinct
from the loading phase.

Explicit. Explicit process information is provided by the user before the process is first
scheduled.

Exponential average. An averaging technique that updates a statistic by this formula:

NewValue := w .OldValue + (1−w).NewMeasurement

Extent. A group of contiguous disk blocks that constitute part of a file.

External waste. SeeWaste.

Extrinsic. Extrinsic properties of a process are characteristics associated with the user
who owns the process, such as how urgent the process is.

Failure atomicity. A property of transactions that either all or none of the operations in
the transaction take effect. (SeeSynchronization atomicity.)

Fault. A trap generated by the hardware when address translation cannot continue
because of an absent page or segment. These situations are known aspage faults and
segment faults, respectively.

Fault-rate graph. A graph showing the behavior ofa page-replacement policy for a
given page-referencestring across a range of main-store sizes.

File. A named collection of data. Files may be written by a process and later read by the
same or another process. Files are usually represented by a logically connected set of
bytes on a disk or magnetic tape.

File descriptor. A structure on a disk that stores data associated with a file, such as its
access rights, physical arrangement, and usage statistics.

File descriptor area. A region on disk dedicated to file descriptors.

File manager. The portion of the operating system that deals with file structures.

File server. A computer dedicated to providing files to a collection of computers.

336 Glossary

Finalization. Action taken when a resource is released to put it in the proper state.

First fit. (1) A space-allocation policy that accepts the first region of space that has ade-
quate contents. (2) A resource-allocation policy aimed at reducing starvation by granting
resources, if safe, to processes that have been waiting longer. (SeeBest fit.)

Flag. A parameter in a command that specifies an optional behavior of the process that
the command invokes.

Flat. A file structure is flat if all file names are in the same directory. Also calledone-
level.

Foreground. An interactive process, usually given higher priority than the non-
interactive background processes. (Opposite ofBackground.)

Format. (1) To establish the structure of a disk pack, laying out sector boundaries. (2)
To establish the disk structures for a file system.

Frame. (1) A region on magnetic tape that is 1 bit long and (usually) 9 bits wide. (2) A
unit of transmission that is short enough so that the sender and receiver clocks remain
synchronized during the transmission.

Free port. A communication port with many writers and many readers.

Full duplex. A kind of communication line where data may travel in both directions
simultaneously. (SeeHalf duplex andSimplex.)

Full name. The name of a file that includes its path name and its local name.

Gateway. A computer on two networks that can transfer messages from one to the other.

Global. A global page replacement policy selects pages to discard from any process.
(SeeLocal andPool.)

Group identifier. A number associated with all the processes and files created for a par-
ticular group of users. This number is used for accounting and protection purposes. (See
User identifier.)

Guard. A procedure exported from a monitor. Guards are mutually exclusive.

Half duplex. A kind of communication line where data travels in either direction, but
only in one direction at a time. (SeeFull duplex andSimplex.)

Hamming distance. The number of bit positions at which two strings differ.

Handler. A program that responds to interrupts.

Hardware. The bare computer, including its main store, the devices attached to it, and
its central processing unit.

Header. (1) The prefix on a transmission frame, used to synchronize the sender and the
receiver. (2) More generally, extra information placed in a message by a level of
transmission protocol.

Hierarchical allocation. A policy for resource allocation under which a process may
only request resources that have a higher level than any resource it currently holds.

Glossary 337

Hint. Usually but not necessary true and up to date. For example, the name of the
machine where a process resides may be cached as a hint on other machines but not
updated if the process moves. (SeeAbsolute.)

History. (1) A log of past commands recorded so that they can be modified and resub-
mitted. (2) A log of past events recorded for debugging or accounting purposes.

Hit ratio. The percentage of time that accesses to a cache result in a cache hit.

Hysteresis Principle. Resist change. In particular, when data are brought into a cache,
leave them there for a while before archiving them again.

Idle time. Time during which no process is ready to run.

Icon. A graphical representation of an object or abstraction on a bit-mapped display.

Implicit. Implicit process information is gathered by the operating system while it is ser-
vicing the process.

Indirect file. A file that contains the full name of another file. Opening the indirect file
has the effect of opening the file it names. Also called asymbolic link.

Inheriting. When a process splits into two or creates a new process, we say that the new
processes inherit from the old one if they start with the same contents of virtual space,
open files, or other resources.

Initialization file. A file that contains customized settings for a program. The program
reads this file during initialization.

Input port. A communication port with one reader and many writers.

Intentions list. A list of operations that must be executed to finish a transaction. Inten-
tions lists are usually written in stable storage.

Inter-file gap. An empty region on a magnetic tape that separates one file from another.

Inter-record gap. An empty region on a magnetic tape that separates one record from
another.

Interactive. A style for using a computer in which users type in commands and see
responses on a display. New commands can therefore be based on the results of previous
commands. Interactive computing is often found in conjunction with monoprogramming
on single-user microcomputers and multiprogramming on larger machines.

Internal waste. SeeWaste.

Interrupt. A hardware event that signals some external condition, such as completion of
transput. Interrupts cause a context switch to the kernel.

Intrinsic. Intrinsic properties of a process are characteristics that distinguish one process
from another, such as service-time requirements, storage needs, and amount of transput
required.

Invariant expression. A syntax for specifying synchronization information.

Invocation. Turning a program that is stored in a load image into a running process.

338 Glossary

I/O. Either input or output. (SeeTransput.)

IOP. Input-output processor. Also calledchannel.

Kernel. The core of the operating system; a permanently resident control program using
special hardware privileges to react to interrupts from external devices and to requests for
service from processes. (SeeEssential utility andOptional utility.)

Kernel space. The virtual space of the kernel.

Kernel time. Time spent by the kernel making policy decisions and carrying them out.

Key. (1) A security mechanism used with locks. (SeeLock.) (2) The first element in a
pair that is used for searching for that pair in a directory. (3) A field of a file record used
for searching for that record.

Knot. A set of vertices in a generalized resource graph such that starting at any vertex of
the knot, paths lead to all the vertices in the knot and to no vertices outside the knot.

Label. An initial file on a magnetic tape that describes the tape.

Latency. Delay between a request and its completion. (SeeSeek latency, Winding
latency, andRotational latency.)

Law of Diminishing Returns. The first policy you think of is very poor. The next one
works fine. With enormous effort, you can do even a little better.

Lazy evaluation. Avoiding doing work when it is first discovered in the hope that it
might never be needed. (Example:Copy on write. Opposite ofEager evaluation.)

Level Principle. What appears as an active entity from one point of view often appears
as a data structure from a lower level.

Liberal. A resource allocation policy is liberal if it grants resources whenever asked.
Liberality is intended to maximize the level of multiprogramming. (Opposite ofConser-
vative.)

Line editor. An interactive program used to enter and modify the contents of a single
line. This program is often part of the terminal driver. (SeeEditing.)

Line clock. A device that generates an interrupt every 60th (or 50th) of a second.

Linker. The program that combines the output of compilers or assemblers with library
routines and prepares a load image.

Livelock. A situation in which the algorithm that decides whether to block an activity
fails to reach a decision and continues to use computational resources. (SeeDeadlock
andStarvation.)

Load. To construct a new process, initializing its virtual store, including its instructions
and data, from a load image. (SeeSplit.)

Loader. A program that brings a load image into main store. Also calledImage activa-
tor.

Load image. A representation of the virtual space for a process, usually kept in a file.
This file is constructed by a linker and brought into main store by a loader.

Glossary 339

Local. (1) A local page replacement method is one that selects pages to swap out from
the virtual space of the process whose page needs the space. (SeeGlobal andPool.) (2)
A local file name is the name the file has in its directory.

Local-area network. A set of computers at a single installation connected by communi-
cation devices.

Locality. The phenomenon that programs actively use only a limited set of pages during
any particular time period of execution. This set of pages is called the locality of the pro-
gram during that time.

Lock. (1) A security device, used with keys. (SeeKey.) (2) A note on an object (like a
file or a page) indicating that it is in use by some transaction for reading or writing. (3) A
device for mutual exclusion that uses an atomic test-and-set or test-and-add instruction.

Log. A record of changes made to files during a transaction so that the changes can be
reversed or reapplied.

Logical names. Names expanded by the file manager according to tables.

Logoff. The end of an interactive session.

Logon. The start of an interactive session.

Long-haul network. A network of computers that spans a large geographic region.

Long-term scheduling. A policy that decides when to let new processes enter the ready
list.

Main store. The fast random-access memory of a computer, typically between 64K and
16M bytes. Also calledprimary memory or core.

Mapped access. A file access method in which the entire file is mapped into the virtual
space of the process.

Mechanism. A technique by which an activity is performed. (SeePolicy.)

Medium-term scheduling. A policy that removes processes from the ready list in order
to reduce contention for resources, particularly space and time.

Memoryless. The exponential distribution is called memoryless because the expected
time to the next event does not depend on how long it has been since the previous event.

Menu. A list of commands that are legal in the current situation, typically presented on a
bit-mapped display.

Migration. Moving a process from one machine to another to improve throughput and
to balance load.

Mirrored tables. The kernel duplicates information that is also stored in a hardware
table. The kernel table represents the truth, possibly with fields that the hardware table
does not possess. This technique is used especially for address translation tables. Also
calledshadow tables.

Miss. When a cache does not have the information needed to complete an operation.

Missed time. The elapsed time between the instant a process arrives in the ready queue
and the time it leaves that queue minus the required time for the process.

340 Glossary

Mode. SeeAccess mode.

Model. A mathematical description of a physical situation, used for deriving analytic or
simulation results.

Monitor. A programming-language construct for mutual exclusion and synchronization.

Mounting. Placing the contents of one disk as a virtual subdirectory in another disk.

Multicomputer. A computer built of several processors that do not share main store.
The processors communicate by sending messages through a communication device.

Multiprocessor. A computer built with more than one processor sharing the same main
store. Also calledattached processor.

Multiprogramming. The situation in which many processes may be in the ready list at
one time and share the computational resource through some policy of short-term
scheduling.

Mutual exclusion. Ensuring that two activities that use the same data may not occur at
the same time. (SeeRegion.)

Name space. The set of identifiers in a program, representing variables and procedures.

Network. A number of computers connected by communication lines for the purpose of
transmitting data.

Nickname. A simple way to invoke a complex operation.

Non-alternating switch. A device used to determine which of two conflicting activities
may enter a region.

Non-preemptive. A policy that never preempts a resource from a process.

Non-privileged state. SeeProcessor state.

Object. A unit of information that a subject wishes to access. (SeeAccess control.)

Offline. (1) A device is offline if it is disconnected from the computer and no transfers
can be made. (2) A set of operations is performed offline if they may be done at any con-
venient time instead of at the time they are requested.

Offset. An address given as the distance from the beginning of some object, often a seg-
ment or page.

One-level structure. A one-level file structure has one directory for all file names. Also
calledflat.

One-shot allocation. A resource allocation policy that requires each process to acquire
all the resources it needs at one time. Also calledpreclaiming.

Operating system. Software for a computer, including the kernel, essential utilities, and
optional utilities.

Operator. An employee of a computer installation in charge of loading jobs and collect-
ing output.

Open. (1) To initialize data structures or hardware when a data object or device starts to
be used. (2) A process that wishes to use a resource (like a file) might open the resource
before it starts. (SeeDescriptor.)

Glossary 341

Open shop. A style for using a computer in which users sign up for a block of time, typ-
ically 15 or 30 minutes. During that time, the user has complete control of the machine.

Optional utility. A program that is distributed as part of the operating system software
but is not needed by every user. (SeeEssential utility andKernel.)

Output port. A communication port with one writer and many readers.

Overflow file descriptor. A block on the disk that holds disk-block pointers that did not
fit in the file descriptor.

Overhead space. SeeWaste.

Overhead time. Time needed to perform the computations needed for a policy.

Overlay. A technique whereby the same region of virtual store is used for different pur-
poses at different times.

Overloading. Use of one object for two purposes. The object could be a field of a
record, the name of a subroutine, an error message, or anything else. Which purpose is
intended depends on the context in which the object is used.

Overrun. An error that occurs indirect-memory-access transfers ifmain store cannot
supply the next byte to write to the device when it is needed, or if it cannot store the next
byte from the device before that byte has been discarded to make room for more data.

Page. A region of virtual store. The page size is determined by the hardware (and occa-
sionally by the operating system) and is a constant over all pages.

Page fault. A trap generated by the hardware when a page absent from main store is
accessed by a program.

Page frame. A region of physical store exactly long enough to hold one page.

Page reference string. A list of the pagesreferenced by aprocess during the course of
execution.

Page-replacement policy. A policy that decides which page to swap out to make room
for a page that must be swapped in.

Page table. The name of the address translation table when paging is used.

Parameter. (1) An adjustable quantity that tunes a distribution to fit the data or to
describe the situation of interest. (2) An argument to a procedure. (3) An argument to a
command in command language. (SeeFlag.)

Parent. A direct ancestor in a tree, whether the tree is composed of files, processes, or
other entities. The parent of a process is the one that submitted a service call leading to
the creation of that process. (Opposite ofChild.)

Parity. The count of some event, modulo 2. A parity bit is an extra bit on a word that is
set or cleared to make the number of one bits in the word 0 or 1 mod 2 (that is, even or
odd).

Partial deletion. A file is partially deleted if it is no longer directly accessible but can be
recovered without much effort. (SeeDelete.)

342 Glossary

Partition. A fixed region of main store used as a virtual space. The partition method
was supported by the IBM 360 and used in the OS/360 operating system.

Password. A secret combination of symbols. Subjects that know a password have
access to the objects it protects.

Path expression. A syntax for specifying synchronization information.

Path name. Part of a full file name that specifies the directory in which the file is found.

Pattern. A string that represents a set of file names.

Penalty ratio. The ratio of response time to required time for a given process,
represented byP. P is always greater than or equal to 1. Also calledExecution time mul-
tiplication factor. (SeeResponse ratio.)

Permanence. A property of transactions that once one completes successfully, the
results of its operations will never be lost.

Personalized shorthand. A phrase acceptable to the command interpreter that is
expanded to a different phrase as established by the user.

Phase change. When a program leaves one region of locality and enters another.

Physical. The raw materials of an abstraction, typically actual hardware, as opposed to a
virtual view of it. (Opposite ofVirtual.)

Pipe. An inter-process communication device that appears like a file opened for reading
by one process and writing by another.

Platter. A part of a disk pack, divided into tracks.

Policy. A way to choose which activities to perform. (SeeMechanism.)

Polling. Periodically checking the status of a physical or virtual device, usually to detect
completion of a transput operation.

Pool. A pool page replacement method chooses a page to swap out from a pool of avail-
able page frames. (SeeLocal andGlobal.)

Port. A virtual device through which processes communicate.

Port capability. Permission to read or write to a particular port. This permission can be
transmitted in messages.

Port file. A file that allows processes that open it to communicate with each other.

Preemption. Reclaiming a resource from a process before the process has finished using
it.

Prefetching. Bringing pages into main store before they are needed by a process in
order to avoid wasting time servicing page faults or file transput requests. (SeeLocality.)

Present field. A field in the translation table set by the software when a page or segment
is swapped in.

Privilege. Access right.

Privileged state. SeeProcessor state.

Glossary 343

Process. The execution of a program. The kernel causes the process to run by switching
context to it. The process submits service calls to request resources from the kernel.
Also calledtask or job.

Process interface. The interface between a process and the kernel, consisting of service
calls and their responses.

Processor. A device able to execute computer instructions. Most computers have just
one processor; those with more are called multiprocessors. Also calledcentral process-
ing unit.

Processor sharing. A theoretical scheduling policy in which every process gets an
identical fraction of the computing resources. Equivalently, each process has its own vir-
tual processor that runs at a varying fraction of the speed of the physical processor.

Processor state. A hardware state that determines which instructions are currently legal
and which address-translation tables are currently in use. Some machines have only two
states, privileged and non-privileged; others have more.

Processor-synchronous. A class of mutual-exclusion and synchronization methods that
work by making a processor uninterruptible. (Opposite ofStore-synchronous.)

Process switch. The actions taken by the kernel to cause a different process to run the
next time the context switches from kernel to process. (SeeContext switch.)

Producer-consumer. A situation in which one set of activities creates data and another
set of activities uses those data. (SeeBounded buffer.)

Program. A set of instructions packaged into a form that can be run by a process.

Program counter. A hardware register that indicates the address of the currently exe-
cuting instruction.

Programmable clock. A device that can be set to generate an interrupt after an arbitrary
interval.

Progress diagram. An n -dimensional picture where dimensioni refers to virtual time
in processi . A path through that diagram starting at the origin shows how those
processes are scheduled. Some regions of the diagram may be forbidden because of
resource conflicts between processes.

Protection. Preventing a subject from modifying objects it should not modify. For
example, preventing a process from modifying the virtual store of another process or
preventing a user from writing into another user’s file. (SeeSecurity.)

Protocol. A set of conventions that governs the co-operation between two activities. It
includes a specification of the kinds of data that are transmitted between them and what
those data mean.

Queueing network. A mathematical description of a set of queues, servers, and
processes that can be used to derive quantities such as expected penalty ratio.

Read-ahead. An eager-evaluation policy that prefetches data blocks from serial devices
into a main-store cache before any process requests them. Also calledprefetching and
anticipatory buffering.

344 Glossary

Readers-writers problem. A situation in which any writer conflicts with all other
readers and writers.

Read/write mark. A logical position in a file that indicates where the next data transfer
will occur.

Realizable. An allocation state is realizable if it makes sense. For example, the number
of resources currently in use cannot exceed the total number of resources.

Record. (1) A chunk of data stored on magnetic tape, delimited by inter-record gaps.
(2) A chunk of data stored in a file and structured by fields.

Reduction. A technique to manipulate a waits-for graph to detect deadlock.

Redundancy. Using more bits than necessary to store or transmit data in order to pro-
vide reliability.

Reflecting. A virtualizing kernel receives traps when its clients perform privileged
instructions and interrupts when devices need service. If the kernel causes one of its vir-
tual machines to see this trap or interrupt, we say the trap or interrupt has been reflected.

Region. A set of instructions that must be executed excluding some other activity. (See
Mutual exclusion.)

Register. A hardware-supplied fast region of store. Many computers have addressing
modes that use registers. Not to be confused withDevice register.

Relative. With respect to a standardreferencepoint. For example, arelative file name
indicates where a file lies with respect to the current working directory. (SeeAbsolute.)

Remote job entry. Submitting a job from one computer to another, with the results
transmitted back to the first computer.

Remote logon. Logging on to a computer over a network. (SeeLogon.)

Remote mounting. Placing the contents of a directory as a virtual subdirectory on
another machine. (SeeMounting.)

Resident monitor. A simple operating system that starts the next process when the pre-
vious one finishes.

Resource class. A kind of resource (like a tape drive) for which the individual resources
are indistinguishable, or at least the differences are immaterial to the requesting process.

Resource graph. A graph of processes and resources with arcs from processes to
resources they are waiting for and from resources to processes that are using them.

Resource Principle. An operating system is a collection of algorithms that allocate
resources to processes.

Response ratio. The ratio of required time to response time for a given process,
represented by R. R is always less than or equal to 1. (SeePenalty ratio.)

Response time. The elapsed time between the instant a process arrives in the ready
queue and the time it leaves that queue. Also calledturnaround time, especially in a
batch environment.

Glossary 345

Rotational latency. The delay in accessing a disk block while the disk rotates into the
correct position.

Run-length encoding. A data compression technique that replaces a run of similar char-
acters with a run-length indication.

Safe. A resource allocation state is safe if the processes form a sequence, each element
of which can acquire its resources and terminate if all the previous ones do.

Safe sequence. A sequence of processes used to show that a resource allocation state is
safe.

Salvage. To examine the data on a garbaged disk and recover the original structure.

Saturation. The ratio of arrival rate to service rate, usually denoted byρ. Also called
Traffic intensity.

Scatter-gather. SeeData chaining.

Scheduling. (1) Managing the time resource by deciding when each process should be
allowed to run. (2) Orchestrating the starting times for any set of operations, such as disk
reads or transaction operations.

Secondary store. Long-term storage used for files, typically disk.

Secrecy. Preventing unauthorized inspection of data. (SeeSecurity.)

Sector. A region of a track on a disk pack that holds one block of information.

Security. Preventing unwanted accesses to objects. (SeeProtection, Secrecy, and
Authentication.)

Seek. (1) Motion of the disk read/write head from one track to another. (2) File opera-
tion that moves to a given point in the file.

Seek latency. The delay in accessing a disk block necessitated by a disk seek operation.

Segment. A region of virtual space whose addresses all specify that segment and which
is allocated as a single unit.

Segment fault. A trap generated by the hardware when a segment absent from main
store is accessed by a program.

Segment table. The name of the translation table when segmentation is used.

Semaphore. A mutual-exclusion and synchronization device that contains a lock, a
count of concurrent activities, and a queue of waiting activities.

Sequencer. A counter used to assign an arbitrary order to unordered events.

Sequential access. A file access method in which the read/write mark is incremented
after each data transfer by the amount of data transferred.

Serializability. A property of the simultaneous execution of a number of transactions
that has those transactions produce the same result they would have had they been run
sequentially in some order.

Serialization. Running one process or transaction at a time, or only allowing one at a
time to acquire resources.

346 Glossary

Serially reusable. A resource that may be granted to a process after it has been used by
another.

Service. (1) To service an interrupt is to give the next data to or accept the last set of
data from a device that has interrupted because it has finished the previous transput. (2)
To service a device is to service the completion interrupt for that device.

Service call. A request that a running process makes of the kernel to acquire or release a
resource or to perform transput. Service calls always switch context to the kernel.

Service rate. The rate at which processes can be executed, usually represented byβ.
The expected time to service a single process is 1/ β.

Session. A period of interactive use lasting from logon to logoff.

Short-term scheduling. Any policy that determines the order in which ready processes
are executed. The short-term scheduler is also called adispatcher.

Shuffling. Moving segments within physical store to coalesce free space into one piece.
Also calledcompaction.

Simplex. A kind of communication line where data travels in only one direction. (See
Full duplex andHalf duplex.)

Simulation. Deriving the behavior of a collection of interrelated objects by using
random-number generators to make probabilistic decisions and measuring a large number
of samples.

Skewing. Spacing consecutive blocks of a file a few sectors apart on a disk.

Space. A resource that the operating system allocates among the various processes that
compete for it. Space is the ability to store information, whether in main or backing
store.

Spin switch. A generalization of the non-alternating switch ton conflicting activities.
Also calledSpin lock.

Split. To create the virtual space of a new process by copying an existing process. (See
Load.)

Spooling system. A simple operating system that collects jobs on a disk until it can run
them and stores output on a disk until it can print it, but runs only one job at a time.

Stable storage. Storing data redundantly on the disk so that any single failure results in
a readable version of the data.

Stack property. A property of a page-replacementalgorithm that prevents anomalies.
At each point inany page-referencestring, the set of pages that would be in ann -page-
frame main store is a subset of those that would be in an (n +1)-page-frame mainstore.

Startup phase. The time after a process enters the ready list from the main-store wait
list until it has acquired its working set.

Startup phase conflict. The situation in which several processes are simultaneously in
startup phase.

Glossary 347

Starvation. The situation in which a process continues to be denied a resource that it
needs, even though the resource is being granted to other processes.

Starvation detection. Noticing starvation situations when they arise and treating them
by preventing new processes from acquiring resources.

State vector. Part of the context block that the operating system keeps available at all
times. It stores the contents of registers while the process is not running.

Steady state. The situation that holds after the load has been constant for a long enough
time that average behavior has begun to occur.

Storage module. The part of the operating system kernel that makes and implements
main-store allocation policy.

Store-synchronous. A class of mutual-exclusion and synchronization methods that rely
on the fact that main store services only one request at a time, even on a multiprocessor.
(Opposite ofProcessor-synchronous.)

Structured file. A file built of records, some of whose fields are treated as keys.

Structure editor. An interactive program used to enter and modify the contents of an
object such as a printer font or a VLSI layout. (SeeEditing.)

Subdisk. A region of the disk introduced to promote clustering. An attempt is made to
keep files entirely within subdisks.

Subject. An entity such as a process or a user that wishes to access an object. (See
Access control.)

Swapping. Moving part of or all the virtual store of a process between main and backing
store. The area on backing store reserved for this purpose is calledswapping space. A
process (or page or segment) on backing store isswapped out. A process (or page or seg-
ment) in main store isswapped in.

Switch. (1) SeeProcess switch and Context switch. (2) A variable used to determine
which of two conflicting activities may next enter a region. (SeeNon-alternating switch
andSpin lock.)

Synchronization. (1) Achieving a common notion of time, either by sharing clocks or
by passing information. Synchronous transmission uses a header to achieve common
clocks. (2) Causing an activity to wait for a condition.

Synchronization atomicity. A property of transactions that each one is atomic, that is,
indivisible, immune tointerference from othertransactions that might be occurring at the
same time. (SeeFailure atomicity.)

Synchronization graph. A graph whose nodes are activities and whose arrows are pre-
cedence constraints. Also calledprecedence graph.

Synchronous communication. The situation where a process that has requested a send
or receive is blocked until the request completes. (Opposite ofAsynchronous communi-
cation.)

Synchronous transput. The situation where a process that has requested transput is
blocked until the transput completes. (Opposite ofAsynchronous transput.)

348 Glossary

Task. A thread of control within the kernel.

Text. The contents of a file intended to be read by humans.

Text editor. An interactive program used to enter and modify the contents of a text file.
(SeeEditing.)

Thrashing. The situation in which computation is blocked most of the time waiting for
data to be transferred between two levels of the storage hierarchy. The usual case is
thrashing due to page traffic between main and backing store.

Thread. An active entity that inhabits a process. Programming-language ‘‘processes’’
are often implemented as threads.

Tie down. Mark a segment or page as not susceptible to swapping out or shuffling, usu-
ally because DMA is in progress. Also calledlock, pin down, or fix.

Time. The resource of instruction execution, which the operating system shares among
the various processes that are competing for it.

Timeout. A parameter that indicates how long an activity is willing to wait for a particu-
lar event.

Timesharing. Usually refers to interactive multiprogramming. We do not use this term.

Timestamp. A field that records the time at which some event happened.

Track. A band on the platter of a disk pack.

Transaction. A group of file accesses (or other transput operations) that together accom-
plish a goal. (SeeSynchronization atomicity, Failure atomicity, andPermanence.)

Transaction manager. The module of the kernel that provides transaction services.

Transfer latency. The amount of time needed for a sector to pass under the read/write
head of a disk.

Translation look-aside buffer. A cache used by the hardware to hold the most fre-
quently used parts of the translation table.

Translation table. A table used by the hardware to assist in performing address transla-
tion. (SeePage table andSegment table.)

Transparent. Invisible or indistinguishable to a process. Transput is transparent with
respect to a device if the process need not know which device is being used. Address
translation is transparent to processes under paging.

Transput. Either input or output. Transput is often calledI/O, which stands for
input/output.

Transput-bound. A process is transput-bound if it spends most of its time waiting for
transput to complete. An operating system is transput-bound if the ready list is usually
empty and the transput wait lists have members. (Opposite ofCompute-bound.)

Trap. A hardware event that signals a program error such as division by zero or access-
ing an invalid virtual address. The service-call instruction also causes a trap. Traps
cause a context switch to the kernel.

Glossary 349

Trap-door encryption. An encryption algorithm that has no associated decryption algo-
rithm, or whose decryption algorithm is very difficult to discover.

Used field. A field in the translation table set by the hardware when a page or segment is
accessed.

User. The human being who interacts with a computer and who has personal interest
that the computer interpret instructions properly.

User identifier. A number associated with all the processes and files created for a partic-
ular user. This number is used for accounting and protection purposes. (SeeGroup
identifier.)

User interface. The interface between the user and the operating system, especially the
command language.

User Principle. Operations that are performed frequently should be especially easy to
invoke.

Utilization. The fraction of time the computer spends performing computation, as
opposed to transput, resource management, and other kernel work.

Version. A file version holds the contents of a file at one point when it was written.
Later modifications to the file create new versions.

Virtual. The result of an abstraction, typically as seen by a process. (Opposite ofPhysi-
cal.)

Virtual device. A device that is provided not by hardware but by the kernel, often with
physical devices used for actual data storage.

Virtual interrupt. The kernel interrupts a process by modifying its program counter to
the address of its virtual-interrupt handler.

Virtualizing kernel. The kernel of a virtual-machine operating system. Also called a
virtual-machine monitor.

Virtual machine. A process interface that looks just like the bare hardware.

Virtual space. The address space of the computer as seen from a process.

Virtual store. The memory associated with the virtual space.

Virtual time. The amount of time used by a process, advanced only when the process is
running.

Wait. A service call used to block the calling process until a previously requested asyn-
chronous transput operation has completed.

Wait list. A list of processes that are not currently runnable because of a scheduling
decision or because they require resources that have not yet been granted.

Warm start. (1) In simulations, waiting until measurements have reached a steady state.
For example, warm start page replacement analysis does not start counting page faults
required to start up a process. (2) In initializing operating systems, assuming that file
storage is uncorrupted (or at least present).

350 Glossary

Waste. Unused space. External waste is outside of any virtual space. Internal waste is
inside a virtual space but not needed. Overhead space is space occupied by tables needed
for translation. Also calledfragmentation.

Wild card. A convention that allows a number of files to be specified with one pattern.

Winding latency. The time needed to wind a magnetic tape to the desired place.

Window size. A parameter used in defining the working set of a process.

Working directory. A directory that constitutes the environment for a process so that
the process may refer to files in that directory by their local name.

Working set. Pages belonging to a process that have been accessed by the process dur-
ing the most recentw units of virtual time, wherew is the window-size parameter.

Working-set policy. A page replacement policy that restricts the number of processes
on the ready queue so that physical store can accommodate all the working sets of ready
processes.

Workstation. A powerful single-user computer with a high-quality display, usually with
some local disk and a network connection.

Write-behind. A policy that caches data blocks intended to be written out to devices in
main store and writes them when the device is available or when the cache entry is
needed for another purpose.

Write-through. A policy that caches data blocks but writes them to the device whenever
they are changed.

Glossary 351

INDEX

ccclii

CONTENTS

PREFACE xi

Chapter 1 INTRODUCTION 1
1 Philosophy of the book 1
2 The Resource Principle 3
3 Historical development 4

3.1 Open shop 4
3.2 Operator-driven shop 5
3.3 Offline transput 6
3.4 Spooling systems 8
3.5 Batch multiprogramming 8
3.6 Interactive multiprogramming 11
3.7 Distributed computing 12

4 The Beautification Principle 12
5 The kernel and processes 14

5.1 Context blocks 14
5.2 Process lists 17
5.3 Service calls 17

6 Virtual machines 20
7 Further reading 24
8 Exercises 25

Chapter 2 TIME MANAGEMENT 27
1 Goals, measures, and assumptions 29
2 Policies 31

2.1 First come, first served (FCFS) 34
2.2 Round robin (RR) 37
2.3 Shortest process next (SPN) 39
2.4 Preemptive shortest process next (PSPN) 41
2.5 Highest penalty ratio next (HPRN) 41
2.6 Multiple-level feedback (FB) 42
2.7 Selfish round robin (SRR) 44
2.8 Hybrid methods 46
2.9 State-dependent priority methods 46

2.10 External priority methods 47
3 Perspective 47

3.1 Classification of scheduling policies 48
3.2 Evaluating policies 49
3.3 Scheduling levels 51
3.4 Countermeasures 52
3.5 Guiding principles 52

4 Further reading 53

Contents iii

5 Exercises 54

Chapter 3 SPACE MANAGEMENT 57
1 Preliminaries 57

1.1 Swapping 57
1.2 Storage hierarchies 58
1.3 Physical and virtual store 59
1.4 Address translation 60
1.5 Sharing 62
1.6 Initial loading and execution 63

2 Fixed partitions 65
2.1 Security 67
2.2 Overlays 69

3 Single segment 70
3.1 Mechanism 70
3.2 Benefits 73
3.3 Placement and replacement policies 74

4 Two segments 76
5 Segmentation 77

5.1 Implementation 78
5.2 Storing the necessary information 81
5.3 Swapping 81
5.4 Large segment spaces 82
5.5 Shared segments 83
5.6 Unusable space 83
5.7 Initial loading and execution 84

6 Paging 85
6.1 Implementation 87
6.2 Security and sharing 90
6.3 Case study: Multics 91
6.4 Case study: VAX 96
6.5 Paging in virtual machines 97

7 Page-replacement policies 101
7.1 Random replacement 103
7.2 Min 104
7.3 First in, first out (FIFO) 105
7.4 Least recently used (LRU) 107
7.5 Not used recently (NUR) 108
7.6 Second-chance cyclic 110
7.7 Global policies 110
7.8 Working set 111
7.9 Page-fault frequency (PFF) 112

7.10 Working size 112
7.11 WSCLOCK 113
7.12 Missing Used field 113
7.13 Classification of replacement methods 113

When is a page swapped in? 114

iv Contents

Which page should be swapped out? 114
Startup-phase conflicts. 115

8 Perspective 116
9 Further reading 118

10 Exercises 118

Chapter 4 RESOURCE DEADLOCK 121
1 Nuts and bolts 122
2 Deadlock and starvation 124
3 Dining philosophers 128
4 One-shot allocation 131
5 Hierarchical allocation 132
6 Advance-claim algorithm 133
7 Deadlock detection 138
8 Deadlock recovery 141
9 Starvation 141

10 Perspective 142
11 Further reading 144
12 Exercises 144

Chapter 5 TRANSPUT 147
1 Device hardware 148

1.1 Disks 148
1.2 Magnetic tape 150
1.3 Drums 152
1.4 Communication lines 152

Hardware characteristics. 153
Synchronous transmission. 153
Asynchronous transmission. 154

1.5 Summary of device characteristics 155
2 The device interface 156

2.1 Device registers 156
2.2 Direct memory access (DMA) 158
2.3 Channels 159

3 Device drivers 160
3.1 Two levels of device driver 161
3.2 Clock device driver 162
3.3 Terminal device drivers 163
3.4 Disk device drivers 164

4 Data modification 168
4.1 Data compaction 168
4.2 Data encryption 168
4.3 Reliability 170

5 The process interface 172
5.1 To block or not to block 173
5.2 Main-store addresses 174

Contents v

5.3 Implementing the service calls 177
5.4 Buffer depletion 179

6 Perspective 181
7 Further reading 182
8 Exercises 182

Chapter 6 FILE STRUCTURES 185
1 Naming structure of files 186

1.1 One-level (flat) directories 187
1.2 Two-level directories 188
1.3 Aliases and indirect files 189
1.4 Hierarchical directories 192

2 Access control 195
2.1 A formal model of access control 196
2.2 Capability lists 198
2.3 Access lists 199
2.4 Directories and access control 202
2.5 Aliases and indirect files 204

3 Access methods 205
3.1 Sequential access 205
3.2 Direct access 206
3.3 Mapped access 206
3.4 Structured files 207
3.5 Databases 207

4 File recovery 208
4.1 Dumps 208
4.2 Backup files and versions 209
4.3 Partial deletion 210

5 Transactions 211
5.1 Synchronization atomicity 211
5.2 Failure atomicity 213

6 Physical representation 214
6.1 Allocation 215
6.2 File layout 217
6.3 Disk layout 222
6.4 Multiple disks 223
6.5 Multiple machines 225
6.6 Implementing transactions 227

7 Perspective 228
8 Further reading 231
9 Exercises 231

Chapter 7 THE USER INTERFACE 234
1 The command interpreter 235

1.1 Invoking programs and establishing environments 236
1.2 The User Principle 237

vi Contents

1.3 Interacting with programs 240
1.4 Advanced features 242

Wild cards. 242
History. 243
Command completion. 243
Subordinate command interpreters. 244
Redirection of transput. 244
Bit-mapped displays. 246

2 Interactive programs 248
3 Utility programs 249

3.1 Document preparation 249
3.2 Program preparation 250
3.3 Data management 251
3.4 Communication 253

4 Perspective 253
5 Further reading 254
6 Exercises 255

Chapter 8 CONCURRENCY 256
1 The problems 257

1.1 Mutual exclusion 258
1.2 Synchronization 259

2 Mechanisms 260
2.1 Disable interrupts 261
2.2 Busy wait on MutEx 262
2.3 Switch variable 263
2.4 Non-alternating switch 265
2.5 Locks 267
2.6 Semaphores 268
2.7 Critical regions 271
2.8 Conditional critical regions 272
2.9 Monitors 273

2.10 Crowd monitors 280
2.11 Event counts and sequencers 281
2.12 Path expressions 284
2.13 Invariant expressions 287

3 Perspective 289
4 Further reading 290
5 Exercises 291

Chapter 9 CO-OPERATING PROCESSES 294
1 Process creation and naming 295

1.1 Service calls 296
1.2 Programming language syntax 296

2 Inter-process communication 297
2.1 Semaphores 297

Contents vii

2.2 Virtual interrupts 297
2.3 Pipes 298
2.4 Ports 301

Data. 302
Access. 302
Naming and transfer. 303

2.5 Semantics of Read and Write 307
3 Distributed operating systems 308

3.1 Multiprocessors 308
3.2 Local-area networks309
3.3 Long-haul networks 311
3.4 Multicomputers 312

4 The communication-kernel approach 313
4.1 Processes and threads 314
4.2 Communication 315
4.3 Space management 316
4.4 Other services 316

5 Perspective 317
6 Further reading 318
7 Exercises 319

REFERENCES 322

GLOSSARY 328

INDEX 352

viii Contents

Balance is a registered trademark of Sequent Computer Systems, Inc.
CMS is a registered trademark of IBM.
CP/M is a registered trademark of Digital Research.
Cray-1 is a registered trademark of Cray Research.
Cray-2 is a registered trademark of Cray Research.
Cyber is a registered trademark of Control Data Corporation.
DEC is a registered trademark of Digital Equipment Corporation.
DECnet is a registered trademark of Digital Equipment Corporation.
Dynix is a registered trademark of Sequent Computer Systems, Inc.
Exec-8 is a registered trademark of Sperry Rand.
IBM is a registered trademark of International Business Machines Corporation.
Locus is a registered trademark of Locus Computing Corporation.
MS-DOS is a registered trademark of Microsoft Corporation.
MVS is a registered trademark of IBM.
NonStop is a registered trademark of Tandem Computers.
OS/360 is a registered trademark of IBM.
PDP-10 is a registered trademark of Digital Equipment Corporation.
PDP-11 is a registered trademark of Digital Equipment Corporation.
RT-11 is a registered trademark of Digital Equipment Corporation.
Tenex is a registered trademark of BBN.
Tops-10 is a registered trademark of Digital Equipment Corporation.
Tops-20 is a registered trademark of Digital Equipment Corporation.
Univac is a registered trademark of Sperry Rand.
Unix is a registered trademark of Bell Laboratories.
VAX is a registered trademark of Digital Equipment Corporation.
VM/370 is a registered trademark of IBM.
VMS is a registered trademark of Digital Equipment Corporation.

Contents ix

